International Medicine and Health Guidance News ›› 2022, Vol. 28 ›› Issue (20): 2813-2821.DOI: 10.3760/cma.j.issn.1007-1245.2022.20.001
• Scientific Research • Next Articles
Lin Hongli1, Lu Xiaoqing1, Li Youjie2, Sun Yunxiao1
Received:
2022-06-01
Online:
2022-10-15
Published:
2022-10-14
Contact:
Sun Yunxiao, Email: sunyunxiao1979@163.com
Supported by:
National Natural Science Foundation of China (81800169);
Shandong Qingchuang Technology Support Plan (2019KJK014);
"Clinical + X" Project of Binzhou Medical University (BY2021LCX04)
林红丽1 卢晓庆1 李有杰2 孙允霄1
通讯作者:
孙允霄,Email:sunyunxiao1979@163.com
基金资助:
国家自然科学基金(81800169);
山东省青创科技支持计划(2019KJK014);
滨州医学院“临床+X”项目(BY2021LCX04)
Lin Hongli, Lu Xiaoqing, Li Youjie, Sun Yunxiao. Meta analysis of the effect of abnormal expression of long noncoding RNA on the prognosis of acute myeloid leukemia[J]. International Medicine and Health Guidance News, 2022, 28(20): 2813-2821.
林红丽 卢晓庆 李有杰 孙允霄. 长链非编码RNA异常表达对急性髓系白血病预后影响的meta分析[J]. 国际医药卫生导报, 2022, 28(20): 2813-2821.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.imhgn.com/EN/10.3760/cma.j.issn.1007-1245.2022.20.001
[1] Yamamoto JF, Goodman MT. Patterns of leukemia incidence in the United States by subtype and demographic characteristics, 1997-2002[J]. Cancer Causes Control, 2008, 19(4): 379-390. DOI: 10.1007/s10552-007-9097-2. [2] Gamis AS, Alonzo TA, Perentesis JP, et al. Children's Oncology Group's 2013 blueprint for research: acute myeloid leukemia[J]. Pediatr Blood Cancer, 2013, 60(6): 964-971. DOI: 10.1002/pbc.24432. [3] Arber DA. Acute Myeloid leukemia - sciencedirect[J]. Hematopathology (Third Edition), 2018: 429-466. DOI: 10.1016/b978-0-7216-0040-6.00045-9. [4] Newell LF, Cook RJ. Advances in acute myeloid leukemia[J]. BMJ, 2021,375: n2026. DOI: 10.1136/bmj.n2026. [5] Fleischmann M, Schnetzke U, Hochhaus A, et al. Management of acute myeloid leukemia: current treatment options and future perspectives[J] .Cancers (Basel), 2021, 13(22): 5722. DOI: 10.3390/cancers13225722. [6] Loke J, Malladi R, Moss P, et al. The role of allogeneic stem cell transplantation in the management of acute myeloid leukaemia: a triumph of hope and experience[J] .Br J Haematol, 2020, 188(1): 129-146. DOI: 10.1111/bjh.16355. [7] Smolarz B, Zadrożna-Nowak A, Romanowicz H. The role of lncRNA in the development of tumors, including breast cancer[J]. Int J Mol Sci, 2021, 22(16): 8427. DOI: 10.3390/ijms22168427. [8] Kazimierczyk M, Wrzesinski J. Long non-coding RNA epigenetics[J]. Int J Mol Sci, 2021, 22(11): 6166. DOI: 10.3390/ijms22116166. [9] Bernstein E, Allis CD. RNA meets chromatin[J]. Genes Dev, 2005, 19(14): 1635-1655. DOI: 10.1101/gad.1324305. [10] Farhan M, Aatif M, Dandawate P, et al. Non-coding RNAs as mediators of tamoxifen resistance in breast cancers[J]. Adv Exp Med Biol, 2019, 1152: 229-241. DOI: 10.1007/978-3-030-20301-6_11. [11] Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function[J]. Nat Rev Genet, 2016, 17(1): 47-62. DOI: 10.1038/nrg.2015.10. [12] Wang F, Tian X, Zhou J, et al. A three-lncRNA signature for prognosis prediction of acutemyeloid leukemia in patients[J]. Mol Med Rep, 2018, 18(2): 1473-1484. DOI: 10.3892/mmr.2018.9139. [13] Gagliardi S, Pandini C, Garofalo M, et al. Long non coding RNAs and ALS: still much to do[J]. Noncoding RNA Res, 2018, 3(4):226-231. DOI: 10.1016/j.ncrna.2018.11.004. [14] Zhang X, Hong R, Chen W, et al. The role of long noncoding RNA in major human disease[J] .Bioorg Chem, 2019, 92: 103214. DOI: 10.1016/j.bioorg.2019.103214. [15] Adams BD, Parsons C, Walker L, et al. Targeting noncoding RNAs in disease[J]. J Clin Invest, 2017, 127(3):761-771. DOI: 10.1172/JCI84424. [16] Li J, Sun CK. Long noncoding RNA SNHG5 is up-regulated and serves as a potential prognostic biomarker in acute myeloid leukemia[J].Eur Rev Med Pharmacol Sci, 2018, 22(11):3342-3347. DOI: 10.26355/eurrev_201806_15154. [17] Shi J, Ding W, Lu H. Identification of long Non-Coding RNA SNHG family as promising prognostic biomarkers in acute myeloid leukemia[J]. Onco Targets Ther, 2020, 13: 8441-8450. DOI: 10.2147/OTT.S265853. [18] Wu S, Zheng C, Chen S, et al. Overexpression of long non-coding RNA HOTAIR predicts a poor prognosis in patients with acute myeloid leukemia[J]. Oncol lett, 2015, 10(4):2410-2414. DOI: 10.3892/ol.2015.3552. [19] Zhang YY, Huang SH, Zhou HR, et al. Role of HOTAIR in the diagnosis and prognosis of acute leukemia[J]. Oncol Rep, 2016, 36(6): 3113-3122. DOI: 10.3892/or.2016.5147. [20] Luo W, Yu H, Zou X, et al. Long non-coding RNA taurine-upregulated gene 1 correlates with unfavorable prognosis in patients with refractory or relapsed acute myeloid leukemia treated by purine analogue based chemotherapy regimens[J]. Cancer Biomark, 2018, 23(4):485-494. DOI: 10.3233/CBM-181405. [21] Wang X, Zhang L, Zhao F, et al. Long non-coding RNA taurine-upregulated gene 1 correlates with poor prognosis, induces cell proliferation, and represses cell apoptosis via targeting aurora kinase A in adult acute myeloid leukemia[J]. Ann Hematol, 2018, 97(8):1375-1389. DOI: 10.1007/s00277-018-3315-8. [22] Qu Y, Wang Y, Wang P, et al. Overexpression of long noncoding RNA HOXA-AS2 predicts an adverse prognosis and promotes tumorigenesis via SOX4/PI3K/AKT pathway in acute myeloid leukemia[J]. Cell Biol Int, 2020, 44(8): 1745-1759. DOI: 10.1002/cbin.11370. [23] Shi X, Li J, Ma L, et al. Overexpression of ZEB2-AS1 lncRNA is associated with poor clinical outcomes in acute myeloid leukemia[J]. Oncol Lett, 2019, 17(6): 4935-4947. DOI: 10.3892/ol.2019.10149. [24] Yang L, Zhou JD, Zhang TJ, et al. Overexpression of lncRNA PANDAR predicts adverse prognosis in acute myeloid leukemia[J]. Cancer Manag Res, 2018, 10: 4999-5007. DOI: 10.2147/CMAR.S180150. [25] He C, Wang X, Luo J, et al. Long Noncoding RNA maternally expressed gene 3 is downregulated, and its insufficiency correlates with poor-risk stratification, worse treatment response, as well as unfavorable survival data in patients with acute myeloid leukemia[J]. Technol Cancer Res Treat, 2020, 19: 1533033820945815. DOI: 10.1177/1533033820945815. [26] Huang JL, Liu W, Tian LH, et al. Upregulation of long non-coding RNA MALAT-1 confers poor prognosis and influences cell proliferation and apoptosis in acute monocytic leukemia[J]. Oncol Rep, 2017, 38(3):1353-1362. DOI: 10.3892/or.2017.5802. [27] Yan H, Zhang DY, Li X, et al. Long non-coding RNA GAS5 polymorphism predicts a poor prognosis of acute myeloid leukemia in Chinese patients via affecting hematopoietic reconstitution[J]. Leuk Lymphoma, 2017, 58(8):1948-1957. DOI: 10.1080/10428194.2016.1266626. [28] Pashaiefar H, Izadifard M, Yaghmaie M, et al. Low expression of long noncoding RNA IRAIN is associated with poor prognosis in non-M3 acute myeloid leukemia patients[J]. Genet Test Mol Biomarkers, 2018, 22(5): 288-294. DOI: 10.1089/gtmb.2017.0281. [29] Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary time-to-event data into meta-analysis[J]. Trials, 2007, 8: 16. DOI: 10.1186/1745-6215-8-16. [30] Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses[J]. Eur J Epidemiol, 2010, 25(9):603-605. DOI: 10.1007/s10654-010-9491-z. [31] Gottardi M, Simonetti G, Sperotto A, et al. Therapeutic targeting of acute myeloid leukemia by gemtuzumab ozogamicin[J]. Cancers (Basel), 2021, 13(18): 4566. DOI: 10.3390/cancers13184566. [32] Thol F, Heuser M. Treatment for relapsed/refractory acute myeloid leukemia[J]. Hemasphere, 2021, 5(6): e572. DOI: 10.1097/HS9.0000000000000572. [33] Schlenk RF, Frech P, Weber D, et al. Impact of pretreatment characteristics and salvage strategy on outcome in patients with relapsed acute myeloid leukemia[J]. Leukemia, 2017, 31(5): 1217-1220. DOI: 10.1038/leu.2017.22. [34] Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function[J]. Genome Biol, 2017, 18(1): 206. DOI: 10.1186/s13059-017-1348-2. [35] Jarroux J, Morillon A, Pinskaya M. History, discovery, and classification of lncRNAs[J]. Adv Exp Med Biol, 2017, 1008: 1-46. DOI: 10.1007/978-981-10-5203-3_1. [36] Sarfi M, Abbastabar M, Khalili E. Long noncoding RNAs biomarker-based cancer assessment[J]. J Cell Physiol, 2019, 234(10): 16971-16986. DOI: 10.1002/jcp.28417. [37] Zhang Y, Zhang L, Wang Y, et al. MicroRNAs or long noncoding RNAs in diagnosis and prognosis of coronary artery disease[J]. Aging Dis, 2019, 10(2): 353-366. DOI: 10.14336/AD.2018.0617. [38] Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals[J]. Nature, 2009, 458(7235): 223-227. DOI: 10.1038/nature07672. [39] Hirano T, Yoshikawa R, Harada H, et al. Long noncoding RNA, CCDC26, controls myeloid leukemia cell growth through regulation of KIT expression[J]. Mol Cancer, 2015, 14: 90. DOI: 10.1186/s12943-015-0364-7. [40] Wang Y, Zhou Q, Ma JJ. High expression of lnc-CRNDE presents as a biomarker for acute myeloid leukemia and promotes the malignant progression in acute myeloid leukemia cell line U937[J]. Eur Rev Med Pharmacol Sci, 2018, 22(3): 763-770. DOI: 10.26355/eurrev_201802_14310. [41] Huarte M. The emerging role of lncRNAs in cancer[J]. Nat Med, 2015, 21(11): 1253-1261. DOI: 10.1038/nm.3981. [42] Mark M, Rijli FM, Chambon P. Homeobox genes in embryogenesis and pathogenesis[J]. Pediatr Res, 1997, 42(4): 421-429. DOI: 10.1203/00006450-199710000- 00001. [43] Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010, 464(7291): 1071-1076. DOI: 10.1038/nature08975. [44] Wan Y, Chang HY. HOTAIR: flight of noncoding RNAs in cancer metastasis[J]. Cell Cycle, 2010, 9(17): 3391-3392. DOI: 10.4161/cc.9.17.13122. [45] Hao S, Shao Z. HOTAIR is upregulated in acute myeloid leukemia and that indicates a poor prognosis[J]. Int J Clin Exp Pathol, 2015, 8(6):7223-7228. [46] Qin J, Bao H, Li H. Correlation of long non-coding RNA taurine-upregulated gene 1 with disease conditions and prognosis, as well as its effect on cell activities in acute myeloid leukemia[J].Cancer Biomark, 2018, 23(4): 569-577. DOI: 10.3233/CBM-181834. [47] Ghaforui-Fard S, Vafaee R, Taheri M. Taurine-upregulated gene 1: a functional long noncoding RNA in tumorigenesis[J]. J Cell Physiol, 2019, 234(10): 17100-17112. DOI: 10.1002/jcp.28464. [48] Li HY, Xing C, Zhou B, et al. A regulatory circuitry between miR-193a/miR-600 and WT1 enhances leukemogenesis in acute myeloid leukemia[J]. Exp Hematol, 2018, 61: 59-68, e5. DOI: 10.1016/j.exphem.2018.02.001. [49] Zhang R, Tang P, Wang F, et al. Tumor suppressor miR-139-5p targets Tspan3 and regulates the progression of acute myeloid leukemia through the PI3K/Akt pathway[J]. J Cell Biochem, 2019, 120(3): 4423-4432. DOI: 10.1002/jcb.27728. [50] Li Q, Wang J. LncRNA TUG1 regulates cell viability and death by regulating miR-193a-5p/Rab10 axis in acute myeloid leukemia[J]. Onco Targets Ther, 2020, 13: 1289-1301. DOI: 10.2147/OTT.S234935. eCollection 2020. [51] Hu T, Fei Z, Su H, et al. Polydatin inhibits proliferation and promotes apoptosis of doxorubicin-resistant osteosarcoma through LncRNA TUG1 mediated suppression of Akt signaling[J]. Toxicol Appl Pharmacol, 2019, 371: 55-62. DOI: 10.1016/j.taap.2019.04.005. [52] Niu Y, Ma F, Huang W, et al. Long non-coding RNA TUG1 is involved in cell growth and chemoresistance of small cell lung cancer by regulating LIMK2b via EZH2[J]. Mol Cancer, 2017, 16(1): 5. DOI: 10.1186/s12943-016-0575-6. [53] Li Q, Song W, Wang J. TUG1 confers Adriamycin resistance in acute myeloid leukemia by epigenetically suppressing miR-34a expression via EZH2[J]. Biomed Pharmacother, 2019, 109: 1793-1801. DOI: 10.1016/j.biopha.2018. 11.003. [54] Tanaka R, Satoh H, Moriyama M, et al. Intronic U50 small-nucleolar-RNA (snoRNA) host gene of no protein-coding potential is mapped at the chromosome breakpoint t(3;6)(q27;q15) of human B-cell lymphoma[J]. Genes Cells, 2000, 5(4): 277-287. DOI: 10.1046/j.1365-2443.2000.00325.x. [55] Zhao L, Guo H, Zhou B, et al. Long non-coding RNA SNHG5 suppresses gastric cancer progression by trapping MTA2 in the cytosol[J]. Oncogene, 2016, 35(44): 5770-5780. DOI: 10.1038/onc.2016.110. [56] Wang D, Zeng T, Lin Z, et al. Long non-coding RNA SNHG5 regulates chemotherapy resistance through the miR-32/DNAJB9 axis in acute myeloid leukemia[J]. Biomed Pharmacother, 2020, 123: 109802. DOI: 10.1016/j.biopha.2019.109802. |
[1] | Jiang Min, Zhao Yujun. Expression and function of ATP6V1C1 in hepatocellular carcinoma [J]. International Medicine and Health Guidance News, 2022, 28(9): 1270-1276. |
[2] |
Zhang Guijiang, Sun Bin.
Application of laparoscopic ultrasound in laparoscopic resection of liver cancer and its influence on patients [J]. International Medicine and Health Guidance News, 2022, 28(9): 1277-1282. |
[3] | Zhang Na, Wei Wei, Xu Xinke, Chen Cheng, Sun Guifang, Tan Yonghong. Risk factors of intraoperative massive hemorrhage in children undergoing brain tumor removal [J]. International Medicine and Health Guidance News, 2022, 28(8): 1099-1103. |
[4] | Ren Chong, Chen Nan, Chen Ning. Clinical application value of level of neutrophil extracellular traps in the severity evaluation of sepsis in children [J]. International Medicine and Health Guidance News, 2022, 28(6): 808-811. |
[5] | Li Li, Jia Liqing. Relationships between H-FABP, salusin-β levels and disease severity, prognosis in patients with chronic heart failure [J]. International Medicine and Health Guidance News, 2022, 28(3): 390-394. |
[6] |
Hu Wei, Liu Liangjin.
Evaluation of the relationship between ischemic penumbra, collateral circulation, and prognosis of ischemic stroke patients by multimodal CT [J]. International Medicine and Health Guidance News, 2022, 28(3): 394-398. |
[7] | Yu Wenlong, Yin Xiaowei, Yang Yuzhu, Xu Yanmei. One case of giant breast adenosquamous carcinoma and literature review [J]. International Medicine and Health Guidance News, 2022, 28(3): 419-421. |
[8] | Yuan Fawei, Zheng Kun. Value of serum total bilirubin, D-dimer, and IL-6 in the assessment of condition and prognosis of elderly patients with sepsis [J]. International Medicine and Health Guidance News, 2022, 28(20): 2924-2928. |
[9] | Lai Chengzhe. Relationship between serum levels of cTnI, NT-proBNP, and uric acid and prognosis in patients with acute heart failure [J]. International Medicine and Health Guidance News, 2022, 28(17): 2465-2470. |
[10] | Pi Mingrun, Guo Ling, Cui Xijun. Emergency surgery for duodenal stromal tumor bleeding after endoscopic and interventional treatment failure: a case report and literature review [J]. International Medicine and Health Guidance News, 2022, 28(17): 2489-2491. |
[11] | Zhou Dongmei, Zhong Min, Sheng Xiujie. Analysis of clinicopathological characteristics and prognostic factors of 16 cases of cervical neuroendocrine carcinoma [J]. International Medicine and Health Guidance News, 2022, 28(16): 2267-2272. |
[12] | Huang Kefeng, Chen Guiping, Li Min, Duan Haifeng, Cui Jie, Zhang Hao. Expression levels and significance of anterior pituitary hormones and thyroid hormones in patients with traumatic brain injury under different disease severity degrees [J]. International Medicine and Health Guidance News, 2022, 28(14): 1931-1935. |
[13] | Li Li. Changes of serum BNP and hs-CRP levels and their predictive values for long-term prognosis in AMI patients after PCI [J]. International Medicine and Health Guidance News, 2022, 28(12): 1715-1719. |
[14] | Li Rugang, Huang Jieping, Zhang Kuizheng, He Min, Tang Junping, Zeng Xiaolin, Wu Huilan, Chen Zhiqiang, Liang Zezhi, Qin Xiaoyan, Huang Ling. Urinary neutrophil gelatinase-associated lipocalin as a diagnostic marker for urinary tract infection: a systematic review and meta-analysis [J]. International Medicine and Health Guidance News, 2022, 28(10): 1385-1390. |
[15] | Yuan Lijuan, Xiang Shengxiao, Yuan Tiantian, Hao Haiqin, Xie Ping. Systematic review on the effect of cardiac rehabilitation on the quality of life in patients undergoing coronary artery bypass grafting [J]. International Medicine and Health Guidance News, 2022, 28(10): 1448-1457. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||