International Medicine and Health Guidance News ›› 2024, Vol. 30 ›› Issue (22): 3751-3756.DOI: 10.3760/cma.j.issn.1007-1245.2024.22.013
• New Medical Advances • Previous Articles Next Articles
Molecular pathways of leukemia resistance to treatment with venetoclax
Yan Jiaxin, Yu Wenzheng, Chu Wenhui, Zhang Ziwei
Department of Hematology, Binzhou Medical University Hospital, Binzhou 256603, China
Received:
2024-05-13
Online:
2024-11-15
Published:
2024-11-13
Contact:
Yu Wenzheng, Email: bzywz2009@163.com
Supported by:
Beijing Wu Jieping Medical Foundation Research Grant Program
维奈克拉治疗白血病耐药的分子途径
颜嘉欣 于文征 初文慧 仉紫薇
滨州医学院附属医院血液内科,滨州 256603
通讯作者:
于文征,Email:bzywz2009@163.com
基金资助:
北京吴阶平医学基金会科研资助项目
Yan Jiaxin, Yu Wenzheng, Chu Wenhui, Zhang Ziwei.
Molecular pathways of leukemia resistance to treatment with venetoclax [J]. International Medicine and Health Guidance News, 2024, 30(22): 3751-3756.
颜嘉欣 于文征 初文慧 仉紫薇.
维奈克拉治疗白血病耐药的分子途径 [J]. 国际医药卫生导报, 2024, 30(22): 3751-3756.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.imhgn.com/EN/10.3760/cma.j.issn.1007-1245.2024.22.013
[1] Sullivan GP, Flanagan L, Rodrigues DA,et al. The path to venetoclax resistance is paved with mutations, metabolism, and more[J]. Sci Transl Med, 2022,14(674):eabo6891.DOI: 10.1126/scitranslmed.abo6891. [2] Pei S, Pollyea DA, Gustafson A,et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia[J]. Cancer Discov, 2020,10(4):536-551.DOI: 10.1158/2159-8290.CD-19-0710. [3] Guièze R, Liu VM, Rosebrock D,et al. Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies[J]. Cancer Cell, 2019,36(4):369-384.e13.DOI: 10.1016/j.ccell.2019.08.005. [4] Thijssen R, Roberts AW. Venetoclax in lymphoid malignancies: new insights, more to learn[J]. Cancer Cell, 2019 ,36(4):341-343.DOI: 10.1016/j.ccell.2019.09.008. [5] Shah NP, Nicoll JM, Nagar B,et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia[J]. Cancer Cell, 2002,2(2):117-125. DOI: 10.1016/s1535-6108(02)00096-x. [6] Nachmias B, Aumann S, Haran A,et al. Venetoclax resistance in acute myeloid leukaemia-clinical and biological insights[J]. Br J Haematol, 2024,204(4):1146-1158.DOI: 10.1111/bjh.19314. [7] Blombery P, Anderson MA, Gong JN,et al. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia[J]. Cancer Discov, 2019 ,9(3):342-353.DOI: 10.1158/2159-8290.CD-18-1119. [8] Tausch E, Close W, Dolnik A,et al. Venetoclax resistance and acquired BCL2 mutations in chronic lymphocytic leukemia[J]. Haematologica, 2019,104(9):e434-e437. DOI: 10.3324/haematol.2019.222588. [9] van Delft MF, Wei AH, Mason KD,et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized[J]. Cancer Cell, 2006,10(5):389-399. DOI: 10.1016/j.ccr.2006.08.027. [10] Lindsten T, Ross AJ, King A,et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues[J]. Mol Cell, 2000 ,6(6):1389-1399.DOI: 10.1016/s1097-2765(00)00136-2. [11] Nechiporuk T, Kurtz SE, Nikolova O,et al. The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells[J]. Cancer Discov, 2019,9(7):910-925.DOI: 10.1158/2159-8290.CD-19-0125. [12] Rahmani M, Nkwocha J, Hawkins E,et al. Cotargeting BCL-2 and PI3K induces BAX-dependent mitochondrial apoptosis in AML cells[J]. Cancer Res, 2018 ,78(11):3075-3086.DOI: 10.1158/0008-5472.CAN-17-3024. [13] Izzo F, Landau DA. A BAX door to venetoclax resistance[J]. Blood, 2022 ,139(8):1124-1126. DOI: 10.1182/blood.2021013788. [14] Wolter KG, Hsu YT, Smith CL,et al. Movement of bax from the cytosol to mitochondria during apoptosis[J]. J Cell Biol, 1997 ,139(5):1281-1292. DOI: 10.1083/jcb.139.5.1281. [15] Zhou H, Hou Q, Hansen JL,et al. Complete activation of bax by a single site mutation[J]. Oncogene, 2007,26(50):7092-7102. DOI: 10.1038/sj.onc.1210517. [16] Fresquet V, Rieger M, Carolis C,et al. Acquired mutations in BCL2 family proteins conferring resistance to the BH3 mimetic ABT-199 in lymphoma[J]. Blood, 2014,123(26):4111-4119. DOI: 10.1182/blood-2014-03-560284. [17] Blombery P, Lew TE, Dengler MA,et al. Clonal hematopoiesis, myeloid disorders and BAX-mutated myelopoiesis in patients receiving venetoclax for CLL[J]. Blood, 2022,139(8):1198-1207.DOI: 10.1182/blood.2021012775. [18] Morabito F, Gentile M, Monti P,et al. TP53 dysfunction in chronic lymphocytic leukemia: clinical relevance in the era of B-cell receptors and BCL-2 inhibitors[J]. Expert Opin Investig Drugs, 2020 ,29(8):869-880. DOI: 10.1080/13543784.2020.1783239. [19] Konopleva M, Milella M, Ruvolo P, et al. MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex[J]. Leukemia, 2012,26(4):778-787.DOI: 10.1038/leu.2011.287. [20] Choi JH, Bogenberger JM, Tibes R. Targeting apoptosis in acute myeloid leukemia: current status and future directions of BCL-2 inhibition with venetoclax and beyond[J]. Target Oncol, 2020 ,15(2):147-162.DOI: 10.1007/s11523-020-00711-3. [21] Kawiak A, Domachowska A, Krolicka A,et al. 3-Chloroplumbagin induces cell death in breast cancer cells through MAPK-mediated Mcl-1 inhibition[J]. Front Pharmacol, 2019 ,10:784. DOI: 10.3389/fphar.2019.00784. [22] Zhang Q, Riley-Gillis B, Han L,et al. Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia[J]. Signal Transduct Target Ther, 2022,7(1):51.DOI: 10.1038/s41392-021-00870-3. [23] DiNardo CD, Tiong IS, Quaglieri A,et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML[J]. Blood, 2020 ,135(11):791-803.DOI: 10.1182/blood.2019003988. [24] Herling CD, Abedpour N, Weiss J,et al. Clonal dynamics towards the development of venetoclax resistance in chronic lymphocytic leukemia[J]. Nat Commun, 2018,9(1):727. DOI: 10.1038/s41467-018-03170-7. [25] 朱玉,冯悦,罗兴春,等. 维奈克拉联合用药治疗急性髓系白血病的研究进展[J]. 中国新药与临床杂志,2021,40(3):161-166. DOI:10.14109/j.cnki.xyylc.2021.03.01. [26] Zhang X, Qian J, Wang H,et al. Not BCL2 mutation but dominant mutation conversation contributed to acquired venetoclax resistance in acute myeloid leukemia[J]. Biomark Res, 2021 ,9(1):30. DOI: 10.1186/s40364-021-00288-7. [27] Fang DD, Zhu H, Tang Q,et al. FLT3 inhibition by olverembatinib (HQP1351) downregulates MCL-1 and synergizes with BCL-2 inhibitor lisaftoclax (APG-2575) in preclinical models of FLT3-ITD mutant acute myeloid leukemia[J]. Transl Oncol, 2022 ,15(1):101244. DOI: 10.1016/j.tranon.2021.101244. [28] Chan SM, Thomas D, Corces-Zimmerman MR,et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia[J]. Nat Med, 2015,21(2):178-184. DOI: 10.1038/nm.3788. [29] Stuani L, Sabatier M, Saland E,et al. Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia[J]. J Exp Med, 2021 ,218(5):e20200924. DOI: 10.1084/jem.20200924. [30] Chen X, Glytsou C, Zhou H,et al. Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment[J]. Cancer Discov, 2019,9(7):890-909. DOI: 10.1158/2159-8290.CD-19-0117. [31] Bhatt S, Pioso MS, Olesinski EA,et al. Reduced mitochondrial apoptotic priming drives resistance to BH3 mimetics in acute myeloid leukemia[J]. Cancer Cell, 2020 ,38(6):872-890.DOI: 10.1016/j.ccell.2020.10.010. [32] Sharon D, Cathelin S, Mirali S,et al. Inhibition of mitochondrial translation overcomes venetoclax resistance in AML through activation of the integrated stress response[J]. Science translational medicine, 2019, 11(516): eaax2863.DOI:10.1126/scitranslmed.aax2863. [33] Nakajima EC, Van Houten B. Metabolic symbiosis in cancer: refocusing the warburg lens[J]. Mol Carcinog, 2013, 52(5): 329-337.DOI:10.1002/mc.21863. [34] Cramer SL, Saha A, Liu J,et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth[J]. Nat Med, 2017 ,23(1):120-127.DOI: 10.1038/nm.4232. [35] El Sayed R, Haibe Y, Amhaz G,et al. Metabolic factors affecting tumor immunogenicity: what is happening at the cellular level?[J]. Int J Mol Sci, 2021,22(4):2142.DOI: 10.3390/ijms22042142. [36] Raffel S, Falcone M, Kneisel N,et al. BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation[J]. Nature, 2017,551(7680):384-388. DOI: 10.1038/nature24294. [37] Stevens BM, Jones CL, Pollyea DA,et al. Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells[J]. Nat Cancer, 2020,1(12):1176-1187.DOI: 10.1038/s43018-020-00126-z. [38] Konoplev S, Wang X, Tang G,et al. Comprehensive immunophenotypic study of acute myeloid leukemia with KMT2A (MLL) rearrangement in adults: a single-institution experience[J]. Cytometry B Clin Cytom, 2022 ,102(2):123-133.DOI: 10.1002/cyto.b.22051. [39] Gouw AM, Eberlin LS, Margulis K,et al. Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma[J]. Proc Natl Acad Sci U S A,2017,114(17):4300-4305.DOI: 10.1073/pnas.1617709114. [40] Chiarugi A, Dölle C, Felici R,et al. The NAD metabolome--a key determinant of cancer cell biology[J]. Nat Rev Cancer, 2012 ,12(11):741-752.DOI: 10.1038/nrc3340. [41] Jones CL, Stevens BM, Pollyea DA,et al. Nicotinamide metabolism mediates resistance to venetoclax in relapsed acute myeloid leukemia stem cells[J]. Cell Stem Cell, 2020,27(5):748-764.DOI: 10.1016/j.stem.2020.07.021. [42] Coloff JL, Mason EF, Altman BJ,et al. Akt requires glucose metabolism to suppress puma expression and prevent apoptosis of leukemic T cells[J]. J Biol Chem, 2011,286(7):5921-5933. DOI: 10.1074/jbc.M110.179101. [43] Danial NN, Gramm CF, Scorrano L,et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis[J]. Nature, 2003,424(6951):952-956. DOI: 10.1038/nature01825. [44] Rathmell JC, Fox CJ, Plas DR,et al. Akt-directed glucose metabolism can prevent bax conformation change and promote growth factor-independent survival[J]. Mol Cell Biol, 2003 ,23(20):7315-7328.DOI: 10.1128/MCB.23.20.7315-7328.2003. [45] Bosc C, Saland E, Bousard A,et al. Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia[J]. Nat Cancer, 2021 ,2(11):1204-1223. DOI: 10.1038/s43018-021-00264-y. [46] Chen ZX, Pervaiz S. Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells[J]. Cell Death Differ, 2007 ,14(9):1617-1627. DOI: 10.1038/sj.cdd.4402165. [47] Roca-Portoles A, Rodriguez-Blanco G, Sumpton D,et al. Venetoclax causes metabolic reprogramming independent of BCL-2 inhibition[J]. Cell Death Dis, 2020 ,11(8):616.DOI: 10.1038/s41419-020-02867-2. [48] Lee JB, Khan DH, Hurren R,et al. Venetoclax enhances T cell-mediated antileukemic activity by increasing ROS production[J]. Blood, 2021,138(3):234-245. DOI: 10.1182/blood.2020009081. [49] Cai Z, Li CF, Han F,et al. Phosphorylation of PDHA by AMPK drives TCA cycle to promote cancer metastasis[J]. Mol Cell, 2020,80(2):263-278.DOI: 10.1016/j.molcel.2020.09.018. [50] She QB, Solit DB, Ye Q,et al. The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells[J]. Cancer Cell, 2005,8(4):287-297. DOI: 10.1016/j.ccr.2005.09.006. [51] Yang E, Zha J, Jockel J,et al. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death[J]. Cell, 1995 ,80(2):285-291. DOI: 10.1016/0092-8674(95)90411-5. [52] Lindsay J, Esposti MD, Gilmore AP. Bcl-2 proteins and mitochondria--specificity in membrane targeting for death[J]. Biochim Biophys Acta, 2011,1813(4):532-539. DOI: 10.1016/j.bbamcr.2010.10.017. [53] Alkhatabi HA, Zohny SF, Shait Mohammed MR,et al. Venetoclax-resistant MV4-11 leukemic cells activate PI3K/AKT pathway for metabolic reprogramming and redox adaptation for survival[J]. Antioxidants (Basel), 2022 ,11(3):461. DOI: 10.3390/antiox11030461. [54] Carter BZ, Mak PY, Tao W,et al. Targeting MCL-1 dysregulates cell metabolism and leukemia-stroma interactions and resensitizes acute myeloid leukemia to BCL-2 inhibition[J]. Haematologica, 2022 ,107(1):58-76. DOI: 10.3324/haematol.2020.260331. [55] Vander Heiden MG, Chandel NS, Schumacker PT, et al. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange[J]. Mol Cell, 1999,3(2):159-167. DOI: 10.1016/s1097-2765(00)80307-x. [56] Wang X, Bathina M, Lynch J,et al. Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction[J]. Genes Dev, 2013 ,27(12):1351-1364. DOI: 10.1101/gad.215855.113. [57] Salem AH, Agarwal SK, Dunbar M, et al. Pharmacokinetics of venetoclax, a novel BCL-2 inhibitor, in patients with relapsed or refractory chronic lymphocytic leukemia or non-hodgkin lymphoma[J]. J Clin Pharmacol, 2017,57(4):484-492.DOI: 10.1002/jcph.821. |
[1] |
Xiao Zhengping, Li Baosong, Zhang Zhirui, Jiang Hong.
Research progress on treatment for patients with slow transit constipation based on interstitial cells of Cajal [J]. International Medicine and Health Guidance News, 2024, 30(9): 1409-1414. |
[2] |
Liu Zhiqiang, Zhang Cui, Dong Wenjing, Liu Zhen, Sun Jingwu.
Research progress of myocardial fibrosis and AMPK-mTOR-ULK1 signaling pathway [J]. International Medicine and Health Guidance News, 2024, 30(8): 1297-1300. |
[3] |
Wang Xia, Sai Haifang.
Research progress of metabolomics in infectious diseases [J]. International Medicine and Health Guidance News, 2024, 30(8): 1312-1316. |
[4] |
Cui Xiao, Liu Liang.
Role of capsaicin receptors in pathogenesis of diarrheal irritable bowel syndrome [J]. International Medicine and Health Guidance News, 2024, 30(7): 1066-1070. |
[5] |
Ding Jiawen, Li Na.
Research progress on ESBLs positive Klebsiella pneumoniae [J]. International Medicine and Health Guidance News, 2024, 30(7): 1071-1074. |
[6] |
Huang Shuangwang, He Yuwei, Liang Zhuwei, Wang Nan, Su Xin.
Distribution and drug resistance analysis of Carbapenem resistant Gram-negative bacteria in some hospital from 2021 to 2023 [J]. International Medicine and Health Guidance News, 2024, 30(7): 1087-1090. |
[7] |
He Hengyi, Zhang Xiaowei, Chen Ningjie.
Research progress on effects of smoking on rotator cuff injury and prognosis [J]. International Medicine and Health Guidance News, 2024, 30(5): 710-712. |
[8] |
Zhang Hao, Tian Zhihua.
One case of olfactory sulcus meningioma complicated with frontal raphe and literature review [J]. International Medicine and Health Guidance News, 2024, 30(5): 844-847. |
[9] |
Wang Zhihao, Xing Guofei, Zou Xiulan, Hou Hongjun, Sui Haiming.
A case of severe subclavian artery stenosis complicated with digital artery embolism and literature review [J]. International Medicine and Health Guidance News, 2024, 30(5): 848-852. |
[10] |
Shang Dandan, Li Li, Cao Zhang, Zhang Lili, Zhou Chao.
One rare severely obese adolescent girl with endometrial atypical hyperplasia and literature review [J]. International Medicine and Health Guidance News, 2024, 30(5): 853-856. |
[11] |
Liu Hui, Li Zhuomin.
Pathogenic bacteria, drug resistance, and antibiotic use in elderly patients with cerebral infarction and pulmonary infection [J]. International Medicine and Health Guidance News, 2024, 30(4): 623-627. |
[12] |
Li Zimeng, Jiang Yaxin, Wei Tingyu, Jiang Weiting, Chen Bizhen.
Risk prediction model of perioperative hypothermia in patients with general anesthesia: a systematic review [J]. International Medicine and Health Guidance News, 2024, 30(23): 3919-3924. |
[13] |
Chen Xiaoxue, Li Kefeng, Han Haisen, Li Yiming.
Correlations between diffusion tensor imaging parameters and brain edema in patients with acute cerebral infarction [J]. International Medicine and Health Guidance News, 2024, 30(21): 3526-3531. |
[14] |
Li Yang, Cheng Jinfeng, Wei Jingxun, Cui Mingli, Cheng Yanli.
Role of oxidative stress-related pathways in doxorubicin-induced cardiomyopathy [J]. International Medicine and Health Guidance News, 2024, 30(20): 3369-3372. |
[15] |
Wang Shengyuan, Zhao Jian, He Wenhuan, Liu Ziyu, Xu Yan.
Application and prospect of simulation head mold in oral clinical practice teaching [J]. International Medicine and Health Guidance News, 2024, 30(20): 3509-3513. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||