[1] Otto GP, Sossdorf M, Claus RA, et al. The late phase of sepsis is characterized by an increased microbiological burden and death rate[J]. Crit Care, 2011, 15(4):R183. DOI: 10.1186/cc10332.
[2] Tang X, Weng R, Guo G, et al. USP10 regulates macrophage inflammation responses via stabilizing NEMO in LPS-induced sepsis[J]. Inflamm Res, 2023, 72(8):1621-1632. DOI: 10.1007/s00011-023-01768-2.
[3] Zhuang YT, Xu DY, Wang GY, et al. IL-6 induced lncRNA MALAT1 enhances TNF-α expression in LPS-induced septic cardiomyocytes via activation of SAA3[J]. Eur Rev Med Pharmacol Sci, 2017, 21(2):302-309.
[4] Cecconi M, Evans L, Levy M, et al. Sepsis and septic shock[J]. Lancet, 2018, 392(10141):75-87. DOI: 10.1016/S0140-6736(18)30696-2.
[5] Ullah A, Ud Din A, Ding W, et al. A narrative review: CXC chemokines influence immune surveillance in obesity and obesity-related diseases: type 2 diabetes and nonalcoholic fatty liver disease[J]. Rev Endocr Metab Disord, 2023, 24(4):611-631. DOI: 10.1007/s11154-023- 09800-w.
[6] Strnad P, Tacke F, Koch A, et al. Liver - guardian, modifier and target of sepsis[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(1):55-66. DOI: 10.1038/nrgastro.2016.168.
[7] Chen C, Xia S, He J, et al. Roles of taurine in cognitive function of physiology, pathologies and toxication[J]. Life Sci, 2019, 231:116584. DOI: 10.1016/j.lfs.2019.116584.
[8] El Idrissi A. Taurine regulation of neuroendocrine function[J]. Adv Exp Med Biol, 2019, 1155:977-985. DOI: 10.1007/978-981-13-8023-5_81.
[9] Piao J, Meng F, Fang H, et al. Effect of taurine on thymus differentiation of dex-induced immunosuppressive mice[J]. Adv Exp Med Biol, 2019, 1155:381-390. DOI: 10.1007/978-981-13-8023-5_36.
[10] Dickson K, Lehmann C. Inflammatory response to different toxins in experimental sepsis models[J]. Int J Mol Sci, 2019, 20(18):4341. DOI: 10.3390/ijms20184341.
[11] 欧瞳,郭鑫哲,陈文,等.牛磺酸调节巨噬细胞功能的研究进展[J].生命科学,2021,33(9):1082-1088. DOI:10.13376/j.cbls/20210119.
[12] Schaffer S, Azuma J, Takahashi K, et al. Why is taurine cytoprotective? [J]. Adv Exp Med Biol, 2003, 526:307-321. DOI: 10.1007/978-1-4615-0077-3_39.
[13] Marcinkiewicz J, Kontny E. Taurine and inflammatory diseases[J]. Amino Acids, 2014, 46(1):7-20. DOI: 10.1007/s00726-012-1361-4.
[14] Schuller-Levis GB, Park E. Taurine and its chloramine: modulators of immunity[J]. Neurochem Res, 2004, 29(1):117-126. DOI: 10.1023/b:nere.0000010440.37629.17.
[15] Hussain T, Tan B, Yin Y, et al. Oxidative stress and inflammation: what polyphenols can do for us? [J]. Oxid Med Cell Longev, 2016, 2016:7432797. DOI: 10.1155/2016/7432797.
[16] McCord JM, Edeas MA. SOD, oxidative stress and human pathologies: a brief history and a future vision[J]. Biomed Pharmacother, 2005, 59(4):139-142. DOI: 10.1016/j.biopha.2005.03.005.
[17] Gaweł S, Wardas M, Niedworok E, et al. Malondialdehyde (MDA) as a lipid peroxidation marker[J]. Wiad Lek, 2004, 57(9-10):453-455.
[18] Ouyang W, Rutz S, Crellin NK, et al. Regulation and functions of the IL-10 family of cytokines in inflammation and disease[J]. Annu Rev Immunol, 2011, 29:71-109. DOI: 10.1146/annurev-immunol-031210-101312.
[19] 赵嘉昊,商雪,祝慧,等.PI3K/AKT信号通路在心血管疾病中的研究进展[J].国际医药卫生导报,2023,29(15):2077-2080. DOI:10.3760/cma.j.issn.1007-1245.2023. 15.002.
[20] Jiang R, Tang J, Zhang X, et al. CCN1 promotes inflammation by inducing IL-6 production via α6β1/PI3K/Akt/NF-κB pathway in autoimmune hepatitis[J]. Front Immunol, 2022, 13:810671. DOI: 10.3389/fimmu.2022.810671.
[21] Li J, Wang T, Liu P, et al. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD[J]. Food Funct, 2021, 12(9):3898-3918. DOI: 10.1039/d0fo02736g.
[22] Li ST, Dai Q, Zhang SX, et al. Ulinastatin attenuates LPS-induced inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-κB signaling pathway and activating the PI3K/Akt/Nrf2 pathway[J]. Acta Pharmacol Sin, 2018, 39(8):1294-1304. DOI: 10.1038/aps.2017.143.
[23] Hu N, Wang C, Dai X, et al. Phillygenin inhibits LPS-induced activation and inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway[J]. J Ethnopharmacol, 2020, 248:112361. DOI: 10.1016/j.jep. 2019.112361.
[24] Sun SC. The non-canonical NF-κB pathway in immunity and inflammation[J]. Nat Rev Immunol, 2017, 17(9):545-558. DOI: 10.1038/nri.2017.52.
[25] Tiftik RN, Temiz-Reşitoğlu M, Güden DS, et al. Involvement of Rho-kinase/IκB-α/NF-κB activation in IL-1β-induced inflammatory response and oxidative stress in human chondrocytes[J]. Can J Physiol Pharmacol, 2021, 99(4):418-426. DOI: 10.1139/cjpp-2020-0305.
|