International Medicine and Health Guidance News ›› 2022, Vol. 28 ›› Issue (13): 1848-1853.DOI: 10.3760/cma.j.issn.1007-1245.2022.13.015
• Scientific Research • Previous Articles Next Articles
Yang Lingyun, Xu Jinwen, Liu Xunwei, Cheng Yun, Zhou Hongxia, Zhao Liping
Received:
2021-10-22
Online:
2022-07-01
Published:
2022-07-01
Contact:
Zhao Liping, Email: kew-2000@126.com
Supported by:
杨玲云 徐锦雯 刘洵薇 成芸 周红霞 赵丽萍
通讯作者:
赵丽萍,Email:kew-2000@126.com
基金资助:
Yang Lingyun, Xu Jinwen, Liu Xunwei, Cheng Yun, Zhou Hongxia, Zhao Liping. Key gene screening and regulation network construction in cisplatin-induced acute kidney injury[J]. International Medicine and Health Guidance News, 2022, 28(13): 1848-1853.
杨玲云 徐锦雯 刘洵薇 成芸 周红霞 赵丽萍. 顺铂诱导急性肾损伤关键基因的筛选和调控网络的构建[J]. 国际医药卫生导报, 2022, 28(13): 1848-1853.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.imhgn.com/EN/10.3760/cma.j.issn.1007-1245.2022.13.015
[1] Hoste EAJ, Kellum JA, Selby NM, et al. Global epidemiology and outcomes of acute kidney injury[J]. Nat Rev Nephrol, 2018, 14(10): 607-625. DOI: 10.1038/s41581-018-0052-0. [2] Kellum JA. Why are patients still getting and dying from acute kidney injury?[J]. Curr Opin Crit Care, 2016, 22(6): 513-519. DOI: 10.1097/MCC.0000000000000358. [3] Oh GS, Kim HJ, Shen A, et al. Cisplatin-induced kidney dysfunction and perspectives on improving treatment strategies[J]. Electrolyte Blood Press, 2014, 12(2): 55-65. DOI: 10.5049/EBP.2014.12.2.55. [4] Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47. DOI: 10.1093/nar/gkv007. [5] Tong Z, Cui Q, Wang J, et al. TransmiR v2.0: an updated transcription factor-microRNA regulation database[J]. Nucleic Acids Res, 2019, 47(D1): D253-D258. DOI: 10.1093/nar/gky1023. [6] Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions[J]. Nat Methods, 2015, 12(8): 697. DOI: 10.1038/nmeth.3485. [7] Xu HY, Zhang YQ, Liu ZM, et al. ETCM: an encyclopaedia of traditional Chinese medicine[J]. Nucleic Acids Res, 2019, 47(D1): D976-D982. DOI: 10.1093/nar/gky987. [8] Rancoule C, Guy JB, Vallard A, et al. 50th anniversary of cisplatin[J]. Bull Cancer, 2017, 104(2): 167-176. DOI: 10.1016/j.bulcan.2016.11.011. [9] Bonavia A, Singbartl K. A review of the role of immune cells in acute kidney injury[J]. Pediatr Nephrol, 2018, 33(10): 1629-1639. DOI: 10.1007/s00467-017-3774-5. [10] Sato Y, Yanagita M. Immune cells and inflammation in AKI to CKD progression[J]. Am J Physiol Renal Physiol, 2018, 315(6): F1501-F1512. DOI: 10.1152/ajprenal.00195.2018. [11] Hoffmann A, Baltimore D. Circuitry of nuclear factor kappaB signaling[J]. Immunol Rev, 2006, 210: 171-186. DOI: 10.1111/j.0105-2896.2006.00375.x. [12] Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes[J]. Cell, 2003, 114(2): 181-190. DOI: 10.1016/s0092-8674(03)00521-x. [13] Shao X, Yang X, Shen J, et al. TNF-α-induced p53 activation induces apoptosis in neurological injury[J]. J Cell Mol Med, 2020, 24(12): 6796-6803. DOI: 10.1111/jcmm. 15333. [14] Vaseva AV, Marchenko ND, Ji K, et al. p53 opens the mitochondrial permeability transition pore to trigger necrosis[J]. Cell, 2012, 149(7): 1536-1548. DOI: 10.1016/j.cell.2012.05.014. [15] Zhao M, Wang Y, Li L, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance[J]. Theranostics, 2021, 11(4): 1845-1863. DOI: 10.7150/thno.50905. [16] Wei Q, Dong G, Yang T, et al. Activation and involvement of p53 in cisplatin-induced nephrotoxicity[J]. Am J Physiol Renal Physiol, 2007, 293(4): F1282-F1291. DOI: 10.1152/ajprenal.00230.2007. [17] Xie Y, Zhu S, Song X, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 Activity[J]. Cell Rep, 2017, 20(7): 1692-1704. DOI: 10.1016/j.celrep.2017. 07.055. [18] Kenzelmann Broz D, Spano Mello S, Bieging KT, et al.Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses[J]. Genes Dev, 2013, 27(9): 1016-1031. DOI: 10.1101/gad.212282.112. [19] Yang Y, Duan W, Jin Z, et al.JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury[J]. J Pineal Res, 2013, 55(3): 275-86. DOI: 10.1111/jpi.12070. [20] Meares GP, Liu Y, Rajbhandari R, et al.PERK-dependent activation of JAK1 and STAT3 contributes to endoplasmic reticulum stress-induced inflammation[J]. Mol Cell Biol, 2014, 34(20): 3911-3925. DOI: 10.1128/MCB.00980-14. [21] Zhang L, Lu P, Guo X, et al. Inhibition of JAK2/STAT3 signaling pathway protects mice from the DDP-induced acute kidney injury in lung cancer[J]. Inflamm Res, 2019, 68(9): 751-760. DOI: 10.1007/s00011-019-01258-4. [22] Pan J, Zhang C, Shi M, et al.Ethanol extract of Liriodendron chinense (Hemsl.) Sarg barks attenuates hyperuricemic nephropathy by inhibiting renal fibrosis and inflammation in mice[J]. J Ethnopharmacol, 2021, 264: 113278. DOI: 10.1016/j.jep.2020.113278. [23] De Borst MH, Prakash J, Melenhorst WB, et al. Glomerular and tubular induction of the transcription factor c-Jun in human renal disease[J]. J Pathol, 2007, 213(2): 219-228. DOI: 10.1002/path.2228. [24] Gao L, Liu MM, Zang HM, et al. Restoration of E-cadherin by PPBICA protects against cisplatin-induced acute kidney injury by attenuating inflammation and programmed cell death[J]. Lab Invest, 2018, 98(7): 911-923. DOI: 10.1038/s41374-018-0052-5. [25] Yano T, Yazima S, Hagiwara K, et al. Activation of epidermal growth factor receptor in the early phase after renal ischemia-reperfusion in rat[J]. Nephron, 1999, 81(2): 230-233. DOI: 10.1159/000045281. [26] Humes HD, Cieslinski DA, Coimbra TM, et al. Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure[J]. J Clin Invest, 1989, 84(6): 1757-1761. DOI: 10.1172/JCI114359. [27] Chen R, Zhang J, Fan N, et al. Delta9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling[J]. Cell, 2013, 155(5): 1154-1165. DOI: 10.1016/j.cell.2013.10.042. [28] Wang JL, Cheng HF, Shappell S, et al.A selective cyclooxygenase-2 inhibitor decreases proteinuria and retards progressive renal injury in rats[J]. Kidney Int, 2000, 57(6): 2334-2342. DOI: 10.1046/j.1523-1755. 2000.00093.x. [29] Hasegawa K, Wakino S, Yoshioka K, et al. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function[J]. J Biol Chem, 2010, 285(17): 13045-13056. DOI: 10.1074/jbc.M109.067728. [30] Qin W, Xie W, Yang X, et al. Inhibiting microRNA-449 attenuates cisplatin-induced injury in nrk-52e cells possibly via regulating the SIRT1/P53/BAX pathway[J]. Med Sci Monit, 2016, 22: 818-823. DOI: 10.12659/msm.897187. [31] Zhang S, Sun H, Kong W, et al. Functional role of microRNA-500a-3P-loaded liposomes in the treatment of cisplatin-induced AKI[J]. IET Nanobiotechnol, 2020, 14(6): 465-469. DOI: 10.1049/iet-nbt.2019.0247. [32] Yang A, Liu F, Guan B, et al. p53 induces miR-199a-3p to suppress mechanistic target of rapamycin activation in cisplatin-induced acute kidney injury[J]. J Cell Biochem, 2019, 120(10): 17625-17634. DOI: 10.1002/jcb.29030. [33] Hsu YH, Chen TH, Wu MY, et al. Protective effects of Zhibai Dihuang Wan on renal tubular cells affected with gentamicin-induced apoptosis[J]. J Ethnopharmacol, 2014, 151(1): 635-642. DOI: 10.1016/j.jep.2013.11.031. [34] 王珂,王瑞坡,李姣,等. 桑叶黄酮对腺嘌呤诱导大鼠高尿酸血症肾损伤的防治作用[J]. 天然产物研究与开发,2012,24(2): 172-175,202. DOI:10.3969/j.issn.1001-6880. 2012.02.008. [35] 杨忠敏,沈以红,王祖文,等. 桑叶生物碱对D-半乳糖诱导氧化损伤模型小鼠肾脏的改善作用[J]. 食品科学, 2020, 41(19): 198-203. DOI:10.7506/spkx1002-6630- 20190816-179. [36] 罗珊珊,蒋嘉烨,栗源,等. 半夏白术天麻汤对自发性高血压大鼠肾脏蛋白表达谱的影响[J]. 中药材, 2012, 35(6):935-939. |
[1] | Hu Xiaoxia, Liu Ran. Professor Huang Jianling's experience in treatment of gynecological malignant tumors in period of peri-radiotherapy and chemotherapy [J]. International Medicine and Health Guidance News, 2022, 28(9): 1185-1189. |
[2] | Cairenlamao, Qiherima, Sarangowa. Application of Rosa rugosa in traditional Chinese medicine and ethnic medicines [J]. International Medicine and Health Guidance News, 2022, 28(9): 1190-1194. |
[3] | Jiang Min, Zhao Yujun. Expression and function of ATP6V1C1 in hepatocellular carcinoma [J]. International Medicine and Health Guidance News, 2022, 28(9): 1270-1276. |
[4] | Zhou Mingxuan, Li Jianchang. Research progress of Actinidia chinensis root against malignant tumors [J]. International Medicine and Health Guidance News, 2022, 28(8): 1176-1179. |
[5] | Zhang Yuqiong, Cui Hongwei, Yu Lei, Li Guohua, Lyu Xingliang. Correlation between traditional Chinese medicine syndromes of Wangbi disease and pro-inflammatory factors [J]. International Medicine and Health Guidance News, 2022, 28(7): 907-911. |
[6] | Liu Zhilong, He Jing, Li Chongyu. Clinical experience of treating fever [J]. International Medicine and Health Guidance News, 2022, 28(7): 916-919. |
[7] | Zeng Cheng, You Shaowei, Wang Wensu, He Diancheng. Medication rules of traditional Chinese medicine in treatment of Crohn's disease based on data mining [J]. International Medicine and Health Guidance News, 2022, 28(5): 617-620. |
[8] | Pan Guangtao, Chen Aiying, Yang Jingyi, Zhang Zhen, Deng Yu, Liu Xuefeng, Zhang Ping. Metrological analysis on rules of traditional Chinese medicine in treatment of chronic gastritis from perspective of patent literatures [J]. International Medicine and Health Guidance News, 2022, 28(5): 621-624. |
[9] | Huang Lanzhen, Wang Jingtao, Wu Xiujun, Gu Xuemin, He Shuiping. PDCA cycle method in improvement of traditional Chinese medicine prescriptions [J]. International Medicine and Health Guidance News, 2022, 28(11): 1615-1618. |
[10] | Liao Zhennan, Li Qiang, Song Zhuoheng, Cao Rui, Li Weilong, Wang Jie, Dai Hongbo, Luan Shaodong, Hu Bo, Yin Lianghong. FGF23 and Klotho in AKI update [J]. International Medicine and Health Guidance News, 2022, 28(10): 1367-1371. |
[11] | Che Qifu, He Lijie, Shen Zhongda. Effect analysis of Qilianhua Jiedu pill combined with traditional Chinese medicine ointment in the treatment of patients with pneumonia [J]. International Medicine and Health Guidance News, 2022, 28(10): 1422-1426. |
[12] | Li Batong, Wen Yingying, Yang Nianhua, Yu Jianlan. Exploring the effect of traditional Chinese medicine diet therapy in regulating phlegm-dampness constitution type hypertension based on the theory of "simultaneous conditioning of five internal organs" [J]. International Medicine and Health Guidance News, 2022, 28(10): 1426-1430. |
[13] | Ren Junhua, Li Yanhua, Li Qunzhi, Liu Qin, Tang Zhijun. Effect of triple therapy of traditional Chinese medicine combined with enhanced recovery after surgery on gastrointestinal function recovery of patients with after laparoscopic colorectal cancer surgery [J]. International Medicine and Health Guidance News, 2022, 28(1): 86-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||