International Medicine and Health Guidance News ›› 2025, Vol. 31 ›› Issue (20): 3395-3402.DOI: 10.3760/cma.j.cn441417-20250423-20011
• New Medical Advances • Previous Articles Next Articles
From inflammation to carcinogenesis: molecular mechanisms and intervention strategies in progression from ulcerative colitis to colorectal cancer
					
													 
	Feng Zizhao1, Jiang Weiwei2
												  
						
						
						
					
1 Second Clinical Medical College, Binzhou Medical University, Yantai 264100, China; 2 Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
Received:2025-04-23
															
							
															
							
															
							
																	Online:2025-10-15
															
							
																	Published:2025-10-27
															
						Contact:
								Jiang Weiwei, Email: 122743098@qq.com   
													Supported by:Shandong Provincial Medical and Health Science and Technology Project (202303031100)
从炎症到癌变:溃疡性结肠炎向结直肠癌进展的分子机制与干预策略
        
               		 
	冯子钊1  姜伟炜2
                  
        
        
        
        
1滨州医学院第二临床医学院,烟台 264100;2滨州医学院烟台附属医院消化内科,烟台 264100
通讯作者:
					姜伟炜,Email:122743098@qq.com
							基金资助:山东省医药卫生科技项目(202303031100)
Feng Zizhao, Jiang Weiwei.
From inflammation to carcinogenesis: molecular mechanisms and intervention strategies in progression from ulcerative colitis to colorectal cancer [J]. International Medicine and Health Guidance News, 2025, 31(20): 3395-3402.
冯子钊 姜伟炜.
从炎症到癌变:溃疡性结肠炎向结直肠癌进展的分子机制与干预策略 [J]. 国际医药卫生导报, 2025, 31(20): 3395-3402.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.imhgn.com/EN/10.3760/cma.j.cn441417-20250423-20011
|   [1] Wetwittayakhlang P, Golovics PA, Gonczi L, et al. Stable incidence and risk factors of colorectal cancer in ulcerative colitis: a population-based cohort between 1977-2020[J]. Clin Gastroenterol Hepatol, 2024, 22(1):191-193.e3. DOI: 10.1016/j.cgh.2023.03.022.. [2] Kunovszki P, Milassin Á, Gimesi-Országh J, et al. Epidemiology, mortality and prevalence of colorectal cancer in ulcerative colitis patients between 2010-2016 in Hungary - a population-based study[J]. PLoS One, 2020, 15(5):e0233238. DOI: 10.1371/journal.pone.0233238. [3] Hirsch D, Hardt J, Sauer C, et al. Molecular characterization of ulcerative colitis-associated colorectal carcinomas[J]. Mod Pathol, 2021, 34(6):1153-1166. DOI: 10.1038/s41379-020-00722-5. [4] Mäki-Nevala S, Ukwattage S, Olkinuora A, et al. Somatic mutation profiles as molecular classifiers of ulcerative colitis-associated colorectal cancer[J]. Int J Cancer, 2021, 148(12):2997-3007. DOI: 10.1002/ijc.33492. [5] Tang P, Zha L, Ye C, et al. Research progress on the carcinogenesis mechanism of inflammation in ulcerative colitis: a narrative review[J]. Ann Palliat Med, 2021, 10(11): 11994-12002. DOI: 10.21037/apm-21-3138. [6] Yin Y, Wan J, Yu J, et al. Molecular pathogenesis of colitis-associated colorectal cancer: immunity, genetics, and intestinal microecology[J]. Inflamm Bowel Dis, 2023, 29(10): 1648-1657. DOI: 10.1093/ibd/izad081. [7] Mackiewicz T, Sowa A, Fichna J. Biomarkers for early detection of colitis-associated colorectal cancer - current concepts, future trends [J]. Curr Drug Targets, 2021;22(1):137-145. DOI: 10.2174/1389450121666200220123844. [8] Irrazabal T, Thakur BK, Kang M, et al. Limiting oxidative DNA damage reduces microbe-induced colitis-associated colorectal cancer[J]. Nat Commun, 2020, 11(1):1802. DOI: 10.1038/s41467-020-15549-6. [9] Walter L, Canup B, Pujada A, et al. Matrix metalloproteinase 9 (MMP9) limits reactive oxygen species (ROS) accumulation and DNA damage in colitis-associated cancer[J]. Cell Death Dis, 2020, 11(9):767. DOI: 10.1038/s41419-020-02959-z. [10] Zhang J, Mengli Y, Zhang T, et al. Deficiency in epithelium RAD50 aggravates UC via IL-6-mediated JAK1/2-STAT3 signaling and promotes development of colitis-associated cancer in mice [J]. J Crohns Colitis, 2025, 19(2): jjae134. DOI: 10.1093/ecco-jcc/jjae134. [11] Morrison H, Rowe A, Eden K, et al. Diminished noncanonical NF-κB signaling induces colitis-associated colorectal cancer susceptibility upon de-differentiation of epithelial cells[J]. J Immunol, 2022, 208(1_Supplement). DOI:10.4049/jimmunol.208.supp.178.01. [12] Pacifico T, Stolfi C, Tomassini L, et al. Rafoxanide negatively modulates STAT3 and NF-κB activity and inflammation-associated colon tumorigenesis[J]. Cancer Sci, 2024, 115(11): 3596-3611. DOI: 10.1111/cas.16317. [13] Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Targeting STAT3 signaling pathway in colorectal cancer[J]. Biomedicines, 2021, 9(8):1016. DOI: 10.3390/biomedicines9081016. [14] Luo Q, Huang S, Zhao L, et al. Chang qing formula ameliorates colitis-associated colorectal cancer via suppressing IL-17/NF-κB/STAT3 pathway in mice as revealed by network pharmacology study [J]. Front Pharmacol, 2022, 13: 893231. DOI: 10.3389/fphar.2022.893231. [15] Tang F, Cao F, Lu C, et al. Dvl2 facilitates the coordination of NF-κB and Wnt signaling to promote colitis-associated colorectal progression [J]. Cancer Sci, 2022, 113(2): 565-575. DOI: 10.1111/cas.15206. [16] Zhou Y, Xiang S, Zheng H, et al. Neferine suppresses experimental colitis-associated colorectal cancer by inhibition of NF-[formula: see text]B p65 and STAT3[J]. Am J Chin Med, 2022, 50(5): 1387-1400. DOI: 10.1142/S0192415X22500598. [17] Sharma BR, Karki R, Sundaram B, et al. The transcription factor IRF9 promotes colorectal cancer via modulating the IL-6/STAT3 signaling axis[J]. Cancers (Basel), 2022, 14(4): 919. DOI: 10.3390/cancers14040919. [18] Lai CY, Yeh KY, Liu BF, et al. MicroRNA-21 plays multiple oncometabolic roles in colitis-associated carcinoma and colorectal cancer via the PI3K/AKT, STAT3, and PDCD4/TNF-α signaling pathways in zebrafish [J]. Cancers (Basel), 2021, 13(21):5565. DOI: 10.3390/cancers13215565. [19] Yamamoto N, Urabe Y, Nakahara H, et al. Genetic analysis of biopsy tissues from colorectal tumors in patients with ulcerative colitis[J]. Cancers (Basel), 2024, 16(19): 3271. DOI: 10.3390/cancers16193271. [20] Matsumoto K, Urabe Y, Oka S, et al. Genomic landscape of early-stage colorectal neoplasia developing from the ulcerative colitis mucosa in the Japanese population[J]. Inflamm Bowel Dis, 2021, 27(5): 686-696. DOI: 10.1093/ibd/izaa268. [21] Jung S, Lee JL, Kim TW, et al. Molecular characterization of dysplasia-initiated colorectal cancer with assessing matched tumor and dysplasia samples [J]. Ann Coloproctol, 2022, 38(1): 72-81. DOI: 10.3393/ac.2021.00290.0041. [22] Matejcic M, Teer JK, Hoehn HJ, et al. Spectrum of somatic mutational features of colorectal tumors in ancestrally diverse populations[J]. medRxiv [Preprint], 2024,15: 2024.03.11.24303880. DOI: 10.1101/2024.03.11.24303880. [23] Jung G, Hernández-Illán E, Moreira L, et al. Epigenetics of colorectal cancer: biomarker and therapeutic potential[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(2):111-130. DOI: 10.1038/s41575-019-0230-y. [24] Yan L, Gu C, Gao S, et al. Epigenetic regulation and therapeutic strategies in ulcerative colitis[J]. Front Genet, 2023, 14:1302886. DOI: 10.3389/fgene.2023.1302886. [25] Castro-Muñoz LJ, Ulloa EV, Sahlgren C, et al. Modulating epigenetic modifications for cancer therapy (review) [J]. Oncol Rep, 2023, 49(3):59. DOI: 10.3892/or.2023.8496. [26] Gray JS, Wani SA, Campbell MJ. Epigenomic alterations in cancer: mechanisms and therapeutic potential[J]. Clin Sci (Lond), 2022, 136(7):473-492. DOI: 10.1042/CS20210449. [27] Oh CK, Cho YS. Pathogenesis and biomarkers of colorectal cancer by epigenetic alteration[J]. Intest Res, 2024, 22(2):131-151. DOI: 10.5217/ir.2023.00115. [28] Waldner MJ, Neurath MF. TGFβ and the tumor microenvironment in colorectal cancer[J]. Cells, 2023, 12(8):1139. DOI: 10.3390/cells12081139. [29] Dietl A, Ralser A, Taxauer K, et al. RNF43 is a gatekeeper for colitis-associated cancer[J]. BioRxiv, 2024. DOI: 10.1101/2024.01.30.577936. [30] Yang M, Li D, Jiang Z, et al. TGF-β-induced FLRT3 attenuation is essential for cancer-associated fibroblast-mediated epithelial-mesenchymal transition in colorectal cancer[J]. Mol Cancer Res, 2022, 20(8):1247-1259. DOI: 10.1158/1541-7786. [31] Zhang Y, Wang S, Lai Q, et al. Cancer-associated fibroblasts-derived exosomal miR-17-5p promotes colorectal cancer aggressive phenotype by initiating a RUNX3/MYC/TGF-β1 positive feedback loop[J]. Cancer Lett, 2020, 491:22-35. DOI: 10.1016/j.canlet.2020.07.023. [32] Jin Y, Wang C, Zhang B, et al. Blocking EGR1/TGF-β1 and CD44s/STAT3 crosstalk inhibits peritoneal metastasis of gastric cancer[J]. Int J Biol Sci, 2024, 20(4): 1314-1331. DOI: 10.7150/ijbs.90598. [33] Nakagomi E, Mikami T, Funahashi K, et al. Cancer stem cell markers CD44v9+/CD133- are associated with low apoptosis in both sporadic and ulcerative colitis-associated colorectal cancers[J]. Histol Histopathol, 2022, 37(6): 587-595. DOI: 10.14670/HH-18-445. [34] McAndrews KM, Vázquez-Arreguín K, Kwak C, et al. αSMA+ fibroblasts suppress Lgr5+ cancer stem cells and restrain colorectal cancer progression[J]. Oncogene, 2021, 40(26):4440-4452. DOI: 10.1038/s41388-021-01866-7. [35] Li W, Zhang N, Jin C, et al. MUC1-C drives stemness in progression of colitis to colorectal cancer[J]. JCI Insight, 2020, 5(12): e137112. DOI: 10.1172/jci.insight.137112. [36] Gong D, Adomako-Bonsu AG, Wang M, et al. Three specific gut bacteria in the occurrence and development of colorectal cancer: a concerted effort[J]. PeerJ, 2023, 11: e15777. DOI: 10.7717/peerj.15777. [37] Lee CG, Hwang S, Gwon SY, et al. Bacteroides fragilis toxin induces intestinal epithelial cell secretion of interleukin-8 by the E-cadherin/β-catenin/NF-κB dependent pathway[J]. Biomedicines, 2022,10(4):827. DOI: 10.3390/biomedicines10040827. [38] Allen J, Rosendahl Huber A, Pleguezuelos-Manzano C, et al. Colon tumors in enterotoxigenic bacteroides fragilis (ETBF)-colonized mice do not display a unique mutational signature but instead possess host-dependent alterations in the APC gene[J]. Microbiol Spectr, 2022, 10(3): e0105522. DOI: 10.1128/spectrum.01055-22. [39] Taher HJ, Kamel FH. Prevalence and phylogenetic analysis of fusobacterium nucleatum and virulent factor fada among ulcerative colitis precancerous and colorectal carcinoma patients in the Iraqi Kurdish population[J]. Arch Razi Inst, 2023, 78(1):445-452. DOI: 10.22092/ARI.2022.360307.2570. [40] Hussain N, Muccee F, Ashraf NM, et al. Comparative analysis of adhesion virulence protein FadA from gut-associated bacteria of colorectal cancer patients (F. nucleatum) and healthy individuals (E. cloacae) [J]. J Cancer, 2024, 15(17): 5492-5505. DOI: 10.7150/jca.98951. [41] Schöpf F, Marongiu GL, Milaj K, et al. Structural basis of fusobacterium nucleatum adhesin Fap2 interaction with receptors on cancer and immune cells[J]. Nat Commun, 2025, 16(1):8104. DOI: 10.1038/s41467-025-63451-w. [42] Hullar MAJ, Curtis KR, Harrison TA, et al. Abstract PR008: evaluation of intra-tumoral pathogenic bacteria pks+ E. coli, enterotoxigenic B. fragilis and fusobacterium nucleatum in 3695 colorectal cancer cases[J]. Cancer Research, 2022, 82(23-Sup1): 4. DOI: 10.1158/1538-7445.CRC22-PR008. [43] Öztürk Bakar Y, Demiryas S, Ceylan Kılınçarslan A, et al. The relationship of enterotoxigenic bacteroides fragilis and fusobacterium nucleatum intestinal colonization with colorectal cancer: a case-control study performed with colon biopsies[J]. Mikrobiyol Bul, 2023, 57(3):353-364. DOI: 10.5578/mb.20239929. [44] Jo M, Hwang S, Lee CG, et al. Promotion of colitis in B cell-deficient C57bl/6 mice infected with enterotoxigenic bacteroides fragilis[J]. Int J Mol Sci, 2023, 25(1):364. DOI: 10.3390/ijms25010364. [45] Xu Q, Lu X, Li J, et al. Fusobacterium nucleatum induces excess methyltransferase-like 3-mediated microRNA-4717-3p maturation to promote colorectal cancer cell proliferation[J]. Cancer Sci, 2022, 113(11):3787-3800. DOI: 10.1111/cas.15536. [46] Hullar MA, Curtis KR, Harrison T, et al. Abstract 3039: Evaluation of intra-tumoral pks+ E. coli, enterotoxigenic B. Fragilis and Fusobacterium nucleatum, overall and in early onset disease, in colorectal cancer cases[J]. Cancer research, 2023, 83(7-Sup): 5. DOI:10.1158/1538-7445.AM2023-3039. [47] Shao Y, Lan Y, Chai X, et al. CXCL8 induces M2 macrophage polarization and inhibits CD8+ T cell infiltration to generate an immunosuppressive microenvironment in colorectal cancer[J]. FASEB J, 2023, 37(10): e23173. DOI: 10.1096/fj.202201982RRR. [48] Katagata M, Okayama H, Nakajima S, et al. TIM-3 expression and M2 polarization of macrophages in the TGFβ-activated tumor microenvironment in colorectal cancer[J]. Cancers (Basel), 2023, 15(20):4943. DOI: 10.3390/cancers15204943. [49] Shimizu D, Yuge R, Kitadai Y, et al. Pexidartinib and immune checkpoint inhibitors combine to activate tumor immunity in a murine colorectal cancer model by depleting M2 macrophages differentiated by cancer-associated fibroblasts[J]. Int J Mol Sci, 2024, 25(13):7001. DOI: 10.3390/ijms25137001. [50] Zeng S, Hu H, Li Z, et al. Local TSH/TSHR signaling promotes CD8+ T cell exhaustion and immune evasion in colorectal carcinoma[J]. Cancer Commun (Lond), 2024, 44(11):1287-1310. DOI: 10.1002/cac2.12605. [51] Nygaard V, Ree AH, Dagenborg VJ, et al. A PRRX1 signature identifies TIM-3 and VISTA as potential immune checkpoint targets in a subgroup of microsatellite stable colorectal cancer liver metastases[J]. Cancer Res Commun, 2023, 3(2):235-244. DOI: 10.1158/2767-9764.CRC-22-0295. [52] Mokhtari Z, Rezaei M, Sanei MH, et al. Tim3 and PD-1 as a therapeutic and prognostic targets in colorectal cancer: relationship with sidedness, clinicopathological parameters, and survival[J]. Front Oncol, 2023, 13:1069696. DOI: 10.3389/fonc.2023.1069696.  | 
									
| [1] | 
														Zhao Zhou, Liu Weipeng, Li Zongrui, Wang Ruizhi, Hu Baoguang. 
														
															 Research status of hypertensive rat model [J]. International Medicine and Health Guidance News, 2025, 31(9): 1465-1470. | 
												
| [2] | 
														Zan Xingchun. 
														
															 Research progress and prospects of Tongdu Tiaoshen acupuncture in the treatment of post-stroke dysphagia [J]. International Medicine and Health Guidance News, 2025, 31(9): 1470-1474. | 
												
| [3] | 
														Li Qiang. 
														
															 Research progress of ultrasound-guided radiofrequency ablation in treatment of thyroid micropapillary carcinoma [J]. International Medicine and Health Guidance News, 2025, 31(8): 1258-1260. | 
												
| [4] | 
														Hong Jinquan, Huang Zhenyu, Huang Huiwen, Huang Haobo. 
														
															 Research progress of thymidylate synthase gene in tumorigenesis and development [J]. International Medicine and Health Guidance News, 2025, 31(8): 1260-1265. | 
												
| [5] | 
														Jiang Meng, Zhao Jingru, Liu Hui, Liu Qingxin. 
														
															 Research progress on autophagy and ischemic cerebrovascular diseases [J]. International Medicine and Health Guidance News, 2025, 31(8): 1265-1269. | 
												
| [6] | 
														Liu Hanqing, Sun Yinping, Zhao Qiang, Ren Shuai. 
														
															 Research progress on neoadjuvant immunotherapy for MSI-H/dMMR subtype patients with locally advanced colorectal cancer [J]. International Medicine and Health Guidance News, 2025, 31(8): 1270-1274. | 
												
| [7] | 
														Zhu Peng, Tang Wenling, Qin Gang. 
														
															 Research progress on microRNA function and clinical value in colorectal cancer [J]. International Medicine and Health Guidance News, 2025, 31(6): 886-890. | 
												
| [8] | 
														Pan Wenxin, Jiang Weiwei. 
														
															 Advances in research on impact of colonoscopy timing on prognosis of patients with ischemic colitis [J]. International Medicine and Health Guidance News, 2025, 31(6): 914-917. | 
												
| [9] | 
														Zhang Ziyi, Sun Dakang. 
														
															 Research progress on mechanism of TRIM22 against HIV-1 [J]. International Medicine and Health Guidance News, 2025, 31(6): 918-922. | 
												
| [10] | 
														Yi Wei, Mi Qianqian, Zhao Jie, Li Boyu, Wang Dan. 
														
															 Application of color Doppler flow imaging in retrobulbar hemodynamic testing [J]. International Medicine and Health Guidance News, 2025, 31(6): 922-926. | 
												
| [11] | 
														Chen Xiuzhu, Zhang Kai, Wei Yanxiao, Cong Chenyang. 
														
															 Drug therapy for thyroid associated ophthalmopathy [J]. International Medicine and Health Guidance News, 2025, 31(6): 927-929. | 
												
| [12] | 
														Li Xiaotong, Yu Shengqiang. 
														
															 Research progress of tubule-derived exosomes in renal fibrosis [J]. International Medicine and Health Guidance News, 2025, 31(5): 712-718. | 
												
| [13] | 
														Zhang Han, Sun Ting, Wang Yanfei, Zhang Xiaolin, Che Juan. 
														
															 Research progress of post-transplantation lymphoproliferative disease in children with adenotonsillar hypertrophy [J]. International Medicine and Health Guidance News, 2025, 31(5): 752-757. | 
												
| [14] | 
														Mo Jiachan, Fan Wanfeng, Jiang Xingyue. 
														
															 Application status and progress of MRI based radiomics in pituitary adenoma [J]. International Medicine and Health Guidance News, 2025, 31(5): 757-760. | 
												
| [15] | 
														Liu Weifeng, Guo Yuan, Tang Wenjie, Yang Ruimeng, Fan Hao, Wei Xinhua. 
														
															 "Medical + X" talent training mode for development of comprehensive capability of medical imaging graduate students [J]. International Medicine and Health Guidance News, 2025, 31(4): 530-534. | 
												
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||