国际医药卫生导报 ›› 2025, Vol. 31 ›› Issue (19): 3218-3222.DOI: 10.3760/cma.j.cn441417-20250402-19010
空间蛋白质组学:技术方法学进展与临床应用转化
何东浩 尹良红
暨南大学附属第一医院肾内科,广州 510632
收稿日期:2025-04-02
出版日期:2025-10-01
发布日期:2025-10-24
通讯作者:
尹良红,Email:yin-yun@126.com
基金资助:广东省高新技术研究开发中心项目(2023B01012000010)
Spatial proteomics: technological methodological advances and clinical application translation
He Donghao, Yin Lianghong
Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
Received:2025-04-02
Online:2025-10-01
Published:2025-10-24
Contact:
Yin Lianghong, Email: yin-yun@126.com
Supported by:Guangdong High-tech Research and Development Center Project (2023B01012000010)
摘要:
蛋白质的时空动态分布与功能调控是生命活动的核心特征,传统蛋白质组学因难以解析亚细胞定位异质性及动态转位事件而面临瓶颈。空间蛋白质组学通过整合高精度质谱、超分辨成像与人工智能算法,构建了多维分析框架,从而充分了解肿瘤、神经退行性疾病等的发生发展机制。本文简述空间蛋白质组学技术进展与临床应用转化。
何东浩 尹良红.
空间蛋白质组学:技术方法学进展与临床应用转化 [J]. 国际医药卫生导报, 2025, 31(19): 3218-3222.
He Donghao, Yin Lianghong.
Spatial proteomics: technological methodological advances and clinical application translation [J]. International Medicine and Health Guidance News, 2025, 31(19): 3218-3222.
| [1] Luo Y, Na Z, Slavoff SA. P-bodies: composition, properties, and functions[J]. Biochemistry, 2018,57(17):2424-2431. DOI: 10.1021/acs.biochem.7b01162. [2] Rabouille C, Alberti S. Cell adaptation upon stress: the emerging role of membrane-less compartments[J]. Curr Opin Cell Biol, 2017,47:34-42. DOI: 10.1016/j.ceb.2017.02.006. [3] Wheeler RJ, Hyman AA. Controlling compartmentalization by non-membrane-bound organelles[J]. Philos Trans R Soc Lond B Biol Sci, 2018, 373(1747):20170193. DOI: 10.1098/rstb.2017.0193. [4] Zhukov A, Popov V. Eukaryotic cell membranes: structure, composition, research methods and computational modelling[J]. Int J Mol Sci, 2023,24(13):11226. DOI: 10.3390/ijms241311226. [5] Altelaar AF, Munoz J, Heck AJ. Next-generation proteomics: towards an integrative view of proteome dynamics[J]. Nat Rev Genet, 2013,14(1):35-48. DOI: 10.1038/nrg3356. [6] Cupp-Sutton KA, Wu S. High-throughput quantitative top-down proteomics[J]. Mol Omics, 2020,16(2):91-99. DOI: 10.1039/c9mo00154a. [7] 潘艳艳,孙永超,张洪霞,等. 儿童原发性肾病综合征激素敏感与耐药者尿蛋白质组学的研究[J]. 国际医药卫生导报,2019,25(15):2420-2421. DOI:10.3760/cma.j.issn.1007-1245.2019.15.004. [8] Zhang Y, Fonslow BR, Shan B, et al. Protein analysis by shotgun/bottom-up proteomics[J]. Chem Rev, 2013,113(4):2343-2394. DOI: 10.1021/cr3003533. [9] Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function[J]. Nature, 2016,537(7620):347-355. DOI: 10.1038/nature19949. [10] Cui M, Cheng C, Zhang L. High-throughput proteomics: a methodological mini-review[J]. Lab Invest, 2022,102(11):1170-1181. DOI: 10.1038/s41374-022-00830-7. [11] Sidoli S, Garcia BA. Middle-down proteomics: a still unexploited resource for chromatin biology[J]. Expert Rev Proteomics, 2017, 14(7):617-626. DOI: 10.1080/14789450.2017.1345632. [12] Gygi SP, Corthals GL, Zhang Y, et al. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology[J]. Proc Natl Acad Sci U S A, 2000, 97(17):9390-9395. DOI: 10.1073/pnas.160270797. [13] Michelsen U, von Hagen J. Isolation of subcellular organelles and structures[J]. Methods Enzymol, 2009,463:305-328. DOI: 10.1016/S0076-6879(09)63019-6. [14] Qin S, Zhang Y, Tian Y, et al. Subcellular metabolomics: isolation, measurement, and applications[J]. J Pharm Biomed Anal, 2022,210:114557. DOI: 10.1016/j.jpba.2021.114557. [15] Andersen JS, Mann M. Organellar proteomics: turning inventories into insights[J]. EMBO Rep, 2006, 7(9):874-879. DOI: 10.1038/sj.embor.7400780. [16] Foster LJ, de Hoog CL, Zhang Y, et al. A mammalian organelle map by protein correlation profiling[J]. Cell, 2006,125(1):187-199. DOI: 10.1016/j.cell.2006.03.022. [17] Wildgruber R, Weber G, Wise P, et al. Free-flow electrophoresis in proteome sample preparation[J]. Proteomics, 2014,14(4-5):629-636. DOI: 10.1002/pmic.201300253. [18] Nott A, Schlachetzki JCM, Fixsen BR, et al. Nuclei isolation of multiple brain cell types for omics interrogation[J]. Nat Protoc, 2021, 16(3):1629-1646. DOI: 10.1038/s41596-020-00472-3. [19] Thimiri Govinda Raj DB, Khan NA, Venkatachalam S, et al. Step-by-step protocol for superparamagnetic nanoparticle-based endosome and lysosome isolation from eukaryotic cell[J]. Methods Mol Biol, 2020, 2125:167-172. DOI: 10.1007/7651_2019_212. [20] Low TY, Syafruddin SE, Mohtar MA, et al. Recent progress in mass spectrometry-based strategies for elucidating protein-protein interactions[J]. Cell Mol Life Sci, 2021,78(13):5325-5339. DOI: 10.1007/s00018-021-03856-0. [21] Entzminger KC, Hyun JM, Pantazes RJ, et al. De novo design of antibody complementarity determining regions binding a FLAG tetra-peptide[J]. Sci Rep, 2017, 7(1):10295. DOI: 10.1038/s41598-017-10737-9. [22] Green N, Alexander H, Olson A, et al. Immunogenic structure of the influenza virus hemagglutinin[J]. Cell, 1982, 28(3):477-487. DOI: 10.1016/0092-8674(82)90202-1. [23] Lee CM, Adamchek C, Feke A, et al. Mapping protein-protein interactions using affinity purification and mass spectrometry[J]. Methods Mol Biol, 2017, 1610:231-249. DOI: 10.1007/978-1-4939-7003-2_15. [24] Roux KJ, Kim DI, Burke B. BioID: a screen for protein-protein interactions[J]. Curr Protoc Protein Sci, 2013,74:19.23.1-19.23.14. DOI: 10.1002/0471140864.ps1923s74. [25] Kalocsay M. APEX Peroxidase-catalyzed proximity labeling and multiplexed quantitative proteomics[J]. Methods Mol Biol, 2019,2008:41-55. DOI: 10.1007/978-1-4939-9537-0_4. [26] Rhee HW, Zou P, Udeshi ND, et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging[J]. Science, 2013, 339(6125):1328-1331. DOI: 10.1126/science.1230593. [27] Chen CL, Hu Y, Udeshi ND, et al. Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase[J]. Proc Natl Acad Sci U S A, 2015, 112(39):12093-12098. DOI: 10.1073/pnas.1515623112. [28] Roux KJ, Kim DI, Raida M, et al. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells[J]. J Cell Biol, 2012, 196(6):801-810. DOI: 10.1083/jcb.201112098. [29] Kushner J, Papa A, Marx SO. Use of proximity labeling in cardiovascular research[J]. JACC Basic Transl Sci, 2021, 6(7):598-609. DOI: 10.1016/j.jacbts.2021.01.005. [30] Yang J, Wagner SA, Beli P. Illuminating spatial and temporal organization of protein interaction networks by mass spectrometry-based proteomics[J]. Front Genet, 2015, 6:344. DOI: 10.3389/fgene.2015.00344. [31] Morawska LP, Hernandez-Valdes JA, Kuipers OP. Diversity of bet-hedging strategies in microbial communities-recent cases and insights[J]. WIREs Mech Dis, 2022, 14(2):e1544. DOI: 10.1002/wsbm.1544. [32] Meeks JC, Campbell EL, Summers ML, et al. Cellular differentiation in the cyanobacterium Nostoc punctiforme[J]. Arch Microbiol, 2002, 178(6):395-403. DOI: 10.1007/s00203-002-0476-5. [33] Shaffer SM, Dunagin MC, Torborg SR, et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance[J]. Nature, 2017, 546(7658):431-435. DOI: 10.1038/nature22794. [34] de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth[J]. Cancer Cell, 2023, 41(3):374-403. DOI: 10.1016/j.ccell.2023.02.016. [35] Mattiazzi Usaj M, Yeung CHL, Friesen H, et al. Single-cell image analysis to explore cell-to-cell heterogeneity in isogenic populations[J]. Cell Syst, 2021, 12(6):608-621. DOI: 10.1016/j.cels.2021.05.010. [36] Hickey JW, Neumann EK, Radtke AJ, et al. Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging[J]. Nat Methods, 2022, 19(3):284-295. DOI: 10.1038/s41592-021-01316-y. [37] Black S, Phillips D, Hickey JW, et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies[J]. Nat Protoc, 2021, 16(8):3802-3835. DOI: 10.1038/s41596-021-00556-8. [38] Sirerol-Piquer MS, Cebrián-Silla A, Alfaro-Cervelló C, et al. GFP immunogold staining, from light to electron microscopy, in mammalian cells[J]. Micron, 2012, 43(5):589-599. DOI: 10.1016/j.micron.2011.10.008. [39] Frenkel-Morgenstern M, Cohen AA, Geva-Zatorsky N, et al. Dynamic proteomics: a database for dynamics and localizations of endogenous fluorescently-tagged proteins in living human cells[J]. Nucleic Acids Res, 2010, 38(Database issue):D508-512. DOI: 10.1093/nar/gkp808. [40] Yamanaka M, Smith NI, Fujita K. Introduction to super-resolution microscopy[J]. Microscopy (Oxf), 2014, 63(3):177-192. DOI: 10.1093/jmicro/dfu007. [41] Doll SG, Meshkin H, Bryer AJ, et al. Recognition of the TDP-43 nuclear localization signal by importin α1/β[J]. Cell Rep, 2022, 39(13):111007. DOI: 10.1016/j.celrep.2022.111007. [42] Falini B, Mecucci C, Tiacci E, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype[J]. N Engl J Med. 2005, 352(3):254-266. DOI: 10.1056/NEJMoa041974. [43] Goncharov AP, Dicusari Elissaiou C, Ben Aharon Farzalla E, et al. Signalling pathways in a nutshell: from pathogenesis to therapeutical implications in prostate cancer[J]. Ann Med, 2025, 57(1):2474175. DOI: 10.1080/07853890.2025.2474175. [44] Wu L, Lin Y, Song J, et al. TMEM175: a lysosomal ion channel associated with neurological diseases[J]. Neurobiol Dis, 2023,185:106244. DOI: 10.1016/j.nbd.2023.106244. [45] Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies[J]. Cell, 2019, 179(2):312-339. DOI: 10.1016/j.cell.2019.09.001. [46] Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review[J]. JAMA, 2013, 310(17):1842-1850. DOI: 10.1001/jama.2013.280319. [47] Duhamel M, Drelich L, Wisztorski M, et al. Spatial analysis of the glioblastoma proteome reveals specific molecular signatures and markers of survival[J]. Nat Commun, 2022, 13(1):6665. DOI: 10.1038/s41467-022-34208-6. [48] Tracy TE, Madero-Pérez J, Swaney DL, et al. Tau interactome maps synaptic and mitochondrial processes associated with neurodegeneration[J]. Cell, 2022, 185(4):712-728. DOI: 10.1016/j.cell.2021.12.041. [49] Jean Beltran PM, Federspiel JD, Sheng X, et al. Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases[J]. Mol Syst Biol, 2017, 13(3):922. DOI: 10.15252/msb.20167062. [50] Cook KC, Tsopurashvili E, Needham JM, et al. Restructured membrane contacts rewire organelles for human cytomegalovirus infection[J]. Nat Commun, 2022, 13(1):4720. DOI: 10.1038/s41467-022-32488-6. [51] Song X, Xiong A, Wu F, et al. Spatial multi-omics revealed the impact of tumor ecosystem heterogeneity on immunotherapy efficacy in patients with advanced non-small cell lung cancer treated with bispecific antibody[J]. J Immunother Cancer, 2023, 11(2):e006234. DOI: 10.1136/jitc-2022-006234. |
| [1] | 赵洲 刘为朋 李宗睿 王睿智 胡宝光. 高血压大鼠模型的研究现状 [J]. 国际医药卫生导报, 2025, 31(9): 1465-1470. |
| [2] | 昝兴淳. 通督调神针刺治疗脑卒中后吞咽障碍的研究进展与展望 [J]. 国际医药卫生导报, 2025, 31(9): 1470-1474. |
| [3] | 邵远 王志斌 阚炳华. 自动乳腺容积成像联合miR-22-3p、PDGF对乳腺癌患者淋巴结转移及预后的关系 [J]. 国际医药卫生导报, 2025, 31(8): 1244-1249. |
| [4] | 李强. 超声引导下射频消融治疗甲状腺微小乳头状癌的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1258-1260. |
| [5] | 洪金全 黄震宇 黄惠炆 黄豪博. 胸苷酸合成酶基因在肿瘤发生发展中的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1260-1265. |
| [6] | 蒋萌 赵静如 刘惠 刘庆新. 自噬与缺血性脑血管疾病的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1265-1269. |
| [7] | 刘汉清 孙银萍 赵强 任帅. MSI-H/dMMR亚组局部晚期结直肠癌患者新辅助免疫治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1270-1274. |
| [8] | 朱鹏 唐文玲 覃刚. 结直肠癌中微小RNA功能及临床价值进展 [J]. 国际医药卫生导报, 2025, 31(6): 886-890. |
| [9] | 潘文昕 姜伟炜. 结肠镜检查时机对缺血性结肠炎患者预后影响的研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 914-917. |
| [10] | 张子怡 孙大康. TRIM22抗HIV-1作用机制研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 918-922. |
| [11] | 易伟 米倩倩 赵洁 李博宇 王丹. 彩色多普勒血流成像在球后血流动力学检测中的应用 [J]. 国际医药卫生导报, 2025, 31(6): 922-926. |
| [12] | 陈秀珠 张凯 韦岩笑 丛晨阳. 甲状腺相关眼病的药物治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 927-929. |
| [13] | 李晓童 于胜强. 肾小管细胞来源外泌体在肾纤维化中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 712-718. |
| [14] | 张涵 孙婷 王延飞 张肖林 车娟. 移植后淋巴组织增生性疾病在儿童扁桃体腺样体肥大中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 752-757. |
| [15] | 莫家婵 范万峰 姜兴岳. 基于磁共振成像的影像组学在垂体腺瘤中的应用现状及进展 [J]. 国际医药卫生导报, 2025, 31(5): 757-760. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||