[1] Fan J, Watanabe T. Atherosclerosis: known and unknown[J]. Pathol Int, 2022,72(3):151-160. DOI:10.1111/pin.13202.
[2] Li L, Wang M, Ma Q, et al. Role of glycolysis in the development of atherosclerosis[J]. Am J Physiol Cell Physiol, 2022,323(2):C617-C629. DOI: 10.1152/ajpcell.00218.2022.
[3] 程亚清,牛少辉,曹乾,等. 基于网络药理学探讨四妙勇安汤治疗糖尿病足的作用机制[J]. 西部中医药,2025,38(1):73-79. DOI:10.12174/j.issn.2096-9600.2025.01.15.
[4] Crampon K, Giorkallos A, Deldossi M, et al. Machine-learning methods for ligand-protein molecular docking[J]. Drug Discov Today, 2022, 27(1):151-164. DOI: 10.1016/j.drudis.2021.09.007.
[5] 王励之,陈泓西,朱康莲. 西黄丸治疗胃癌作用机制的网络药理学和机器学习探讨[J]. 国际医药卫生导报,2024,30(23):3937-3946. DOI:10.3760/cma.j.issn.1007-1245.2024.23.012.
[6] Cui Y, Zhu Q, Hao H, et al. N-Acetylcysteine and atherosclerosis: promises and challenges[J]. Antioxidants (Basel), 2023,12(12):2073. DOI: 10.3390/antiox12122073.
[7] Kim HW, Shi H, Winkler MA, et al. Perivascular adipose tissue and vascular perturbation/atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2020, 40(11):2569-2576. DOI: 10.1161/ATVBAHA.120.312470.
[8] Gnanenthiran SR, Agarwal A, Patel A. Frontiers of cardiovascular polypills: from atherosclerosis and beyond[J]. Trends Cardiovasc Med, 2023,33(3):182-189. DOI: 10.1016/j.tcm.2021.12.013.
[9] Ruiz-León AM, Lapuente M, Estruch R, et al. Clinical advances in immunonutrition and atherosclerosis: a review[J]. Front Immunol, 2019,10:837. DOI: 10.3389/fimmu.2019.00837.
[10] Kong P, Cui ZY, Huang XF, et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention[J]. Signal Transduct Target Ther, 2022,7(1):131. DOI: 10.1038/s41392-022-00955-7.
[11] Zhao L, Zhang H, Li N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula[J]. J Ethnopharmacol, 2023,309:116306. DOI: 10.1016/j.jep.2023.116306.
[12] Hosseini A, Razavi BM, Banach M, et al. Quercetin and metabolic syndrome: a review[J]. Phytother Res, 2021, 35(10):5352-5364. DOI: 10.1002/ptr.7144.
[13] Kashyap D, Garg VK, Tuli HS, et al. Fisetin and quercetin: promising flavonoids with chemopreventive potential[J]. Biomolecules, 2019, 9(5):174. DOI: 10.3390/biom9050174.
[14] Al-Khayri JM, Sahana GR, Nagella P, et al. Flavonoids as potential anti-inflammatory molecules: a review[J]. Molecules, 2022,27(9):2901. DOI: 10.3390/molecules27092901.
[15] Tsai CF, Chen GW, Chen YC, et al. Regulatory effects of quercetin on M1/M2 macrophage polarization and oxidative/antioxidative balance[J]. Nutrients, 2021,14(1):67. DOI: 10.3390/nu14010067.
[16] Wu W, Liu W, Wang H, et al. β-sitosterol inhibits trimethylamine production by regulating the gut microbiota and attenuates atherosclerosis in ApoE-/- mice[J]. Front Cardiovasc Med, 2022, 9:986905. DOI: 10.3389/fcvm.2022.986905.
[17] Abubakar M, Rasool HF, Javed I, et al. Comparative roles of IL-1, IL-6, IL-10, IL-17, IL-18, 1L-22, IL-33, and IL-37 in various cardiovascular diseases with potential insights for targeted immunotherapy[J]. Cureus, 2023,15(7):e42494. DOI: 10.7759/cureus.42494.
[18] Guo S, Mao X, Liu J. Multi-faceted roles of C1q/TNF-related proteins family in atherosclerosis[J]. Front Immunol, 2023,14:1253433. DOI: 10.3389/fimmu.2023.1253433.
[19] Taleb S, Tedgui A, Mallat Z. IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles[J]. Arterioscler Thromb Vasc Biol, 2015, 35(2):258-264. DOI: 10.1161/ATVBAHA.114.303567.
[20] Pan X, Liu J, Zhong L, et al. Identification of lipid metabolism-related biomarkers for diagnosis and molecular classification of atherosclerosis[J]. Lipids Health Dis, 2023, 22(1):96. DOI: 10.1186/s12944-023-01864-6.
[21] Zhao N, Yu X, Zhu X, et al. Diabetes mellitus to accelerated atherosclerosis: shared cellular and molecular mechanisms in glucose and lipid metabolism[J]. J Cardiovasc Transl Res, 2024, 17(1):133-152. DOI: 10.1007/s12265-023-10470-x.
[22] Baeyens N, Bandyopadhyay C, Coon BG, et al. Endothelial fluid shear stress sensing in vascular health and disease[J]. J Clin Invest, 2016, 126(3):821-828. DOI: 10.1172/JCI83083.
[23] Zeboudj L, Giraud A, Guyonnet L, et al. Selective EGFR (epidermal growth factor receptor) deletion in myeloid cells limits atherosclerosis-brief report[J]. Arterioscler Thromb Vasc Biol, 2018,38(1):114-119. DOI: 10.1161/ATVBAHA.117.309927.
[24] Wang P, Zeng G, Yan Y, et al. Disruption of adipocyte HIF-1α improves atherosclerosis through the inhibition of ceramide generation[J]. Acta Pharm Sin B, 2022,12(4):1899-1912. DOI: 10.1016/j.apsb.2021.10.001.
[25] Diao H, Cheng J, Huang X, et al. The Chinese medicine Fufang Zhenzhu Tiaozhi capsule protects against atherosclerosis by suppressing EndMT via modulating Akt1/β-catenin signaling pathway[J]. J Ethnopharmacol, 2022,293:115261. DOI: 10.1016/j.jep.2022.115261.
[26] Li Z, Wei J, Chen B, et al. The role of MMP-9 and MMP-9 inhibition in different types of thyroid carcinoma[J]. Molecules, 2023,28(9):3705. DOI: 10.3390/molecules28093705.
[27] Lv Q, Han Q, Wen Z, et al. The association between atherosclerosis and nonalcoholic fatty liver disease[J]. Medicine (Baltimore), 2024,103(1):e36815. DOI: 10.1097/MD.0000000000036815.
|