[1] Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: current therapies and new targeted treatments[J]. Lancet, 2017,389(10066):299-311. DOI: 10.1016/S0140-6736(16)30958-8.
[2] Ruiz-Cordero R, Devine WP. Targeted therapy and checkpoint immunotherapy in lung cancer[J]. Surg Pathol Clin, 2020,13(1):17-33. DOI: 10.1016/j.path.2019.11.002.
[3] Senan S, Paul MA, Lagerwaard FJ. Treatment of early-stage lung cancer detected by screening: surgery or stereotactic ablative radiotherapy?[J]. Lancet Oncol, 2013,14(7):e270-274. DOI: 10.1016/S1470-2045(12)70592-2.
[4] Ruiz LM, Libedinsky A, Elorza AA. Role of copper on mitochondrial function and metabolism[J]. Front Mol Biosci, 2021,8:711227. DOI: 10.3389/fmolb.2021.711227.
[5] Jiang Y, Huo Z, Qi X, et al. Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes[J]. Nanomedicine (Lond), 2022,17(5):303-324. DOI: 10.2217/nnm- 2021-0374.
[6] Kaur P, Johnson A, Northcote-Smith J, et al. Immunogenic cell death of breast cancer stem cells induced by an endoplasmic reticulum-targeting copper(II) complex[J]. Chembiochem, 2020,21(24):3618-3624. DOI: 10.1002/cbic.202000553.
[7] Yu Z, Zhou R, Zhao Y, et al. Blockage of SLC31A1-dependent copper absorption increases pancreatic cancer cell autophagy to resist cell death[J]. Cell Prolif, 2019,52(2):e12568. DOI: 10.1111/cpr.12568.
[8] Tsvetkov P, Detappe A, Cai K, et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress[J]. Nat Chem Biol, 2019,15(7):681-689. DOI: 10.1038/s41589-019-0291-9.
[9] Shanbhag VC, Gudekar N, Jasmer K, et al. Copper metabolism as a unique vulnerability in cancer[J]. Biochim Biophys Acta Mol Cell Res, 2021,1868(2):118893. DOI: 10.1016/j.bbamcr.2020.118893.
[10] Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions[J]. Nat Rev Genet, 2009,10(3):155-159. DOI: 10.1038/nrg2521.
[11] Cao HL, Liu ZJ, Huang PL, et al. lncRNA-RMRP promotes proliferation, migration and invasion of bladder cancer via miR-206[J]. Eur Rev Med Pharmacol Sci, 2019,23(3):1012-1021. DOI: 10.26355/eurrev_201902_16988.
[12] Zeng J, Ma YX, Liu ZH, et al. LncRNA SNHG7 contributes to cell proliferation, invasion and prognosis of cervical cancer[J]. Eur Rev Med Pharmacol Sci, 2019,23(21):9277-9285. DOI: 10.26355/eurrev_201911_19420.
[13] Lin J, Liao S, Liu Z, et al. LncRNA FGD5-AS1 accelerates cell proliferation in pancreatic cancer by regulating miR-520a-3p/KIAA1522 axis[J]. Cancer Biol Ther, 2021,22(3):257-266. DOI: 10.1080/15384047.2021.1883184.
[14] Zhang L, Kang W, Lu X, et al. LncRNA CASC11 promoted gastric cancer cell proliferation, migration and invasion in vitro by regulating cell cycle pathway[J]. Cell Cycle, 2018,17(15):1886-1900. DOI: 10.1080/15384101.2018. 1502574.
[15] Polishchuk EV, Merolla A, Lichtmannegger J, et al. Activation of autophagy, observed in liver tissues from patients with wilson disease and from ATP7B-deficient animals, protects hepatocytes from copper-induced apoptosis[J]. Gastroenterology, 2019,156(4):1173-1189.e5. DOI: 10.1053/j.gastro.2018.11.032.
[16] Aubert L, Nandagopal N, Steinhart Z, et al. Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer[J]. Nat Commun, 2020,11(1):3701. DOI: 10.1038/s41467-020-17549-y.
[17] Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022,375(6586):1254-1261. DOI: 10.1126/science.abf0529.
[18] Dong J, Wang X, Xu C, et al. Inhibiting NLRP3 inflammasome activation prevents copper-induced neuropathology in a murine model of Wilson's disease[J]. Cell Death Dis, 2021,12(1):87. DOI: 10.1038/s41419- 021-03397-1.
[19] Ren X, Li Y, Zhou Y, et al. Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis[J]. Redox Biol, 2021,46:102122. DOI: 10.1016/j.redox.2021.102122.
[20] Jiang P, Gu S, Pan D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response[J]. Nat Med, 2018,24(10):1550-1558. DOI: 10.1038/s41591-018-0136-1.
[21] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021,71(3):209-249. DOI: 10.3322/caac.21660.
[22] Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function[J]. J Cell Biol, 2021,220(2):e202009045. DOI: 10.1083/jcb.202009045.
[23] Qian X, Zhao J, Yeung PY, et al. Revealing lncRNA structures and interactions by sequencing-based approaches[J]. Trends Biochem Sci, 2019,44(1):33-52. DOI: 10.1016/j.tibs.2018.09.012.
[24] Li J, Xia R, Liu T, et al. LncRNA-ATB promotes lung squamous carcinoma cell proliferation, migration, and invasion by targeting microRNA-590-5p/NF90 axis[J]. DNA Cell Biol, 2020,39(3):459-473. DOI: 10.1089/dna.2019.5193.
[25] Li G, Guo X. LncRNA STARD13-AS blocks lung squamous carcinoma cells growth and movement by targeting miR-1248/C3A[J]. Pulm Pharmacol Ther, 2020,64:101949. DOI: 10.1016/j.pupt.2020.101949.
[26] Koh EI, Robinson AE, Bandara N, et al. Copper import in Escherichia coli by the yersiniabactin metallophore system[J]. Nat Chem Biol, 2017,13(9):1016-1021. DOI: 10.1038/nchembio.2441.
[27] Li Y, Yang J, Zhang Q, et al. Copper ionophore elesclomol selectively targets GNAQ/11-mutant uveal melanoma[J]. Oncogene, 2022,41(27):3539-3553. DOI: 10.1038/s41388-022-02364-0.
[28] Zhang Y, Dai J, Huang W, et al. Identification of a competing endogenous RNA network related to immune signature in clear cell renal cell carcinoma[J]. Aging (Albany NY), 2021,13(24):25980-26002. DOI: 10.18632/aging.203784.
[29] Filippova EA, Fridman MV, Burdennyy AM, et al. Long noncoding RNA GAS5 in breast cancer: epigenetic mechanisms and biological functions[J]. Int J Mol Sci, 2021,22(13):6810. DOI: 10.3390/ijms22136810.
[30] Li J, Yang C, Li Y, et al. LncRNA GAS5 suppresses ovarian cancer by inducing inflammasome formation[J]. Biosci Rep, 2018,38(2):BSR20171150. DOI: 10.1042/BSR20171150.
[31] Ni W, Yao S, Zhou Y, et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3[J]. Mol Cancer, 2019,18(1):143. DOI: 10.1186/s12943-019-1079-y.
[32] Zhu L, Zhou D, Guo T, et al. LncRNA GAS5 inhibits Invasion and migration of lung cancer through influencing EMT process[J]. J Cancer, 2021,12(11):3291-3298. DOI: 10.7150/jca.56218.
[33] Di Franco S, Turdo A, Todaro M, et al. Role of type I and II interferons in colorectal cancer and melanoma[J]. Front Immunol, 2017,8:878. DOI: 10.3389/fimmu.2017.00878.
[34] Sivori S, Pende D, Quatrini L, et al. NK cells and ILCs in tumor immunotherapy[J]. Mol Aspects Med, 2021,80:100870. DOI: 10.1016/j.mam.2020.100870.
[35] Jongsma MLM, Guarda G, Spaapen RM. The regulatory network behind MHC class I expression[J]. Mol Immunol, 2019,113:16-21. DOI: 10.1016/j.molimm.2017.12.005.
[36] Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion[J]. Science, 2011,331(6024):1565-1570. DOI: 10.1126/science.1203486.
|