国际医药卫生导报 ›› 2025, Vol. 31 ›› Issue (9): 1465-1470.DOI: 10.3760/cma.j.cn441417-20241010-09012
高血压大鼠模型的研究现状
赵洲 刘为朋 李宗睿 王睿智 胡宝光
滨州医学院附属医院胃肠外科,滨州 256603
收稿日期:
2024-10-10
出版日期:
2025-05-01
发布日期:
2025-05-20
通讯作者:
胡宝光,Email:hbglmn@163.com
基金资助:
山东省自然科学基金(ZR2017LH050)
Research status of hypertensive rat model
Zhao Zhou, Liu Weipeng, Li Zongrui, Wang Ruizhi, Hu Baoguang
Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou 256603, China
Received:
2024-10-10
Online:
2025-05-01
Published:
2025-05-20
Contact:
Hu Baoguang, Email: hbglmn@163.com
Supported by:
Shandong Natural Science Foundation (ZR2017LH050)
摘要:
目前,高血压大鼠模型的研究十分普遍。大鼠的基因组、心血管系统结构及生理特性与人类相似,使其成为研究高血压的首选动物模型。为了深入了解该疾病的发病机制并探索新的治疗方法,构建了多种高血压实验模型,主要分为自发性高血压模型和继发性高血压模型。前者包括自发性高血压大鼠(spontaneously hypertensive rats,SHR)、L-NAME(N-nitro-L-arginine methyl ester)模型、Dahl盐敏感模型、米兰高血压品系(Milan hypertensive strain,MHS)模型、Sabra高血压易感(Sabra hypertension-prone,SBH)模型,后者包括肾性高血压模型、内分泌性高血压模型、动脉性高血压模型及其他继发性高血压模型(如睡眠呼吸暂停综合征诱导的高血压模型、糖尿病诱导的高血压模型等)。本文综述了不同模型的构建方法、优缺点,旨在为临床高血压治疗提供更方便、准确的解决方案。
赵洲 刘为朋 李宗睿 王睿智 胡宝光.
高血压大鼠模型的研究现状 [J]. 国际医药卫生导报, 2025, 31(9): 1465-1470.
Zhao Zhou, Liu Weipeng, Li Zongrui, Wang Ruizhi, Hu Baoguang.
Research status of hypertensive rat model [J]. International Medicine and Health Guidance News, 2025, 31(9): 1465-1470.
[1] Wang T, Cai X, Li J, et al. Proteomics analysis in myocardium of spontaneously hypertensive rats[J]. Sci Rep, 2023, 13(1):276. DOI: 10.1038/s41598-023-27590-8. [2] Yin R, Yin L, Li L, et al. Hypertension in China: burdens, guidelines and policy responses: a state-of-the-art review[J]. J Hum Hypertens, 2022, 36(2):126-134. DOI: 10.1038/s41371-021-00570-z. [3] Mingji C, Onakpoya IJ, Perera R, et al. Relationship between altitude and the prevalence of hypertension in Tibet: a systematic review[J]. Heart, 2015, 101(13):1054-1060. DOI: 10.1136/heartjnl-2014-307158. [4] Pravenec M, Kurtz TW. Recent advances in genetics of the spontaneously hypertensive rat[J]. Curr Hypertens Rep, 2010, 12(1):5-9. DOI: 10.1007/s11906-009-0083-9. [5] Kozłowska A, Wojtacha P, Równiak M, et al. Differences in serum steroid hormones concentrations in Spontaneously Hypertensive Rats (SHR) - an animal model of Attention-Deficit/Hyperactivity Disorder (ADHD) [J]. Physiol Res, 2019, 68(1):25-36. DOI: 10.33549/physiolres.933907. [6] Langdale CL, Degoski D, Milliken PH, et al. Voiding behavior in awake unrestrained untethered spontaneously hypertensive and Wistar control rats[J]. Am J Physiol Renal Physiol, 2021, 321(2):F195-F206. DOI: 10.1152/ajprenal.00564.2020. [7] Stanzione R, Forte M, Cotugno M, et al. Beneficial effects of citrus bergamia polyphenolic fraction on saline load-induced injury in primary cerebral endothelial cells from the stroke-prone spontaneously hypertensive rat model[J]. Nutrients, 2023, 15(6):1334. DOI: 10.3390/nu15061334. [8] Kockskämper J, Pluteanu F. Left atrial myocardium in arterial hypertension[J]. Cells, 2022, 11(19):3157. DOI: 10.3390/cells11193157. [9] Matsuo H, Kawakami K, Ohara H, et al. Apolipoprotein E-depletion accelerates arterial fat deposition in the spontaneously hypertensive rat[J]. Exp Anim, 2023, 72(4):439-445. DOI: 10.1538/expanim.23-0012. [10] Li HB, Xu ML, Du MM, et al. Curcumin ameliorates hypertension via gut-brain communication in spontaneously hypertensive rat[J]. Toxicol Appl Pharmacol, 2021, 429:115701. DOI: 10.1016/j.taap.2021.115701. [11] Onizuka S, Ito M, Sekine I, et al. Spontaneous pancreatitis in spontaneously hypertensive rats[J]. Pancreas, 1994, 9(1):54-61. DOI: 10.1097/00006676-199401000-00008. [12] Dai FX, Skopec J, Diederich A, et al. Prostaglandin H2 and thromboxane A2 are contractile factors in intrarenal arteries of spontaneously hypertensive rats[J]. Hypertension, 1992, 19(6 Pt 2):795-798. DOI: 10.1161/01.hyp.19.6.795. [13] Tantisira MH, Sjövall H, Jodal M, et al. Intestinal fluid transport in the small intestine of normotensive and spontaneously hypertensive rats: the importance of enteric nerves, chloride and bicarbonate secretion[J]. Acta Physiol Scand, 1990, 138(2):213-219. DOI: 10.1111/j.1748-1716.1990.tb08835.x. [14] Wang XL, Chen WJ, Jin R, et al. Engineered probiotics Clostridium butyricum-pMTL007-GLP-1 improves blood pressure via producing GLP-1 and modulating gut microbiota in spontaneous hypertension rat models[J]. Microb Biotechnol, 2023, 16(4):799-812. DOI: 10.1111/1751-7915.14196. [15] Dirr EW, Jiracek LG, Baekey DM, et al. Subdiaphragmatic vagal nerve stimulation attenuates the development of hypertension and alters nucleus of the solitary tract transcriptional networks in the spontaneously hypertensive rat[J]. Physiol Genomics, 2023, 55(12):606-617. DOI: 10.1152/physiolgenomics.00016.2023. [16] Khan AA, Sundar P, Natarajan B, et al. An evolutionarily-conserved promoter allele governs HMG-CoA reductase expression in spontaneously hypertensive rat[J]. J Mol Cell Cardiol, 2021, 158:140-152. DOI: 10.1016/j.yjmcc.2021.05.017. [17] Dikmenoğlu Falkmarken NH, Arihan O, Iskit AB. Comparison of endothelin and nitric oxide synthase blockers on hemorheological parameters in endotoxemic rats[J]. Turk J Med Sci, 2017, 47(3):1045-1052. DOI: 10.3906/sag-1607-19. [18] Boultadakis A, Pitsikas N. Effects of the nitric oxide synthase inhibitor L-NAME on recognition and spatial memory deficits produced by different NMDA receptor antagonists in the rat[J]. Neuropsychopharmacology, 2010, 35(12):2357-2366. DOI: 10.1038/npp.2010.109. [19] Yang S, Song L, Shi X, et al. Ameliorative effects of pre-eclampsia by quercetin supplement to aspirin in a rat model induced by L-NAME[J]. Biomed Pharmacother, 2019, 116:108969. DOI: 10.1016/j.biopha.2019.108969. [20] Ntchapda F, Bonabe C, Atsamo AD, et al. Effect of aqueous extract of adansonia digitata stem bark on the development of hypertension in L-NAME-induced hypertensive rat model[J]. Evid Based Complement Alternat Med, 2020, 2020:3678469. DOI: 10.1155/2020/3678469. [21] Greish SM, Abdel-Hady Z, Mohammed SS, et al. Protective potential of curcumin in L-NAME-induced hypertensive rat model: AT1R, mitochondrial DNA synergy[J]. Int J Physiol Pathophysiol Pharmacol, 2020, 12(5):134-146. [22] Aluko EO, Omobowale TO, Oyagbemi AA, et al. Anti-lipidemic effect of fractions of peristrophe bivalvis leaf in NG-nitro-L-arginine methyl ester (L-NAME) treated rats[J]. Drug Res (Stuttg), 2020, 70(5):214-225. DOI: 10.1055/a-1136-6806. [23] Taguchi K. Editorial Comment to High-salt diet promotes crystal deposition through hypertension in Dahl salt-sensitive rat model[J]. Int J Urol, 2019, 26(8):847. DOI: 10.1111/iju.14049. [24] Chakraborty S, Galla S, Cheng X, et al. Salt-responsive metabolite, β-hydroxybutyrate, attenuates hypertension[J]. Cell Rep, 2018, 25(3):677-689.e4. DOI: 10.1016/j.celrep.2018.09.058. [25] Li Y, Salih Ibrahim RM, Chi HL, et al. Altered gut microbiota is involved in the anti-hypertensive effects of vitamin C in spontaneously hypertensive rat[J]. Mol Nutr Food Res, 2021, 65(7):e2000885. DOI: 10.1002/mnfr.202000885. [26] Boberg U, Morsing P, Persson AE. Renal response to volume depletion and expansion in Milan hypertensive rats[J]. Acta Physiol Scand, 1992, 145(3):261-265. DOI: 10.1111/j.1748-1716.1992.tb09363.x. [27] Ge Y, Fan F, Didion SP, et al. Impaired myogenic response of the afferent arteriole contributes to the increased susceptibility to renal disease in Milan normotensive rats[J]. Physiol Rep, 2017, 5(3):e13089. DOI: 10.14814/phy2.13089. [28] Ben-Shabat M, Awad-Igbaria Y, Sela S, et al. Predisposition to cortical neurodegenerative changes in brains of hypertension prone rats[J]. J Transl Med, 2023, 21(1):51. DOI: 10.1186/s12967-023-03916-y. [29] 曹浩,吉霆威,兰琴,等.经腹肾次全切建立大鼠心肾综合征模型[J].中华医学杂志,2019,99(6):447-452. DOI:10.3760/cma.j.issn.0376-2491.2019.06.013. [30] Jin X, Kim WB, Kim MN, et al. Oestrogen inhibits salt-dependent hypertension by suppressing GABAergic excitation in magnocellular AVP neurons[J]. Cardiovasc Res, 2021, 117(10):2263-2274. DOI: 10.1093/cvr/cvaa271. [31] Bigalke JA, Gao H, Chen QH, et al. Activation of orexin 1 receptors in the paraventricular nucleus contributes to the development of deoxycorticosterone acetate-salt hypertension through regulation of vasopressin[J]. Front Physiol, 2021, 12:641331. DOI: 10.3389/fphys.2021.641331. [32] Yan FR, Zhu ZL, Mu YP, et al. Increased caveolin-1 expression enhances the receptor-operated Ca2+ entry in the aorta of two-kidney, one-clip hypertensive rats[J]. Exp Physiol, 2019, 104(6):932-945. DOI: 10.1113/EP086924. [33] Li L, Wang C, Gu Y. Collagen IV, a promising serum biomarker for evaluating the prognosis of revascularization in a 2-kidney, 1-clip hypertensive rat model[J]. Interact Cardiovasc Thorac Surg, 2020, 30(3):483-490. DOI: 10.1093/icvts/ivz275. [34] Shi W, Wang Y, Peng J, et al. EPHB6 controls catecholamine biosynthesis by up-regulating tyrosine hydroxylase transcription in adrenal gland chromaffin cells[J]. J Biol Chem, 2019, 294(17):6871-6887. DOI: 10.1074/jbc.RA118.005767. [35] Arnold AC, Gallagher PE, Diz DI. Brain renin-angiotensin system in the nexus of hypertension and aging[J]. Hypertens Res, 2013, 36(1):5-13. DOI: 10.1038/hr.2012.161. [36] Su C, Xue J, Ye C, et al. Role of the central renin‑angiotensin system in hypertension (Review) [J]. Int J Mol Med, 2021, 47(6):95. DOI: 10.3892/ijmm.2021.4928. [37] Mulatero P, Monticone S, Deinum J, et al. Genetics, prevalence, screening and confirmation of primary aldosteronism: a position statement and consensus of the Working Group on Endocrine Hypertension of The European Society of Hypertension[J]. J Hypertens, 2020, 38(10):1919-1928. DOI: 10.1097/HJH.0000000000002510. [38] Gates P. Arteriosclerosis with superimposed atherosclerosis is the cause not the consequence of essential hypertension[J]. Med Hypotheses, 2020, 144:110236. DOI: 10.1016/j.mehy.2020.110236. [39] Hu Q, Zhang H, Gutiérrez Cortés N, et al. Increased drp1 acetylation by lipid overload induces cardiomyocyte death and heart dysfunction[J]. Circ Res, 2020, 126(4):456-470. DOI: 10.1161/CIRCRESAHA.119.315252. [40] Savini S, Ciorba A, Bianchini C, et al. Assessment of obstructive sleep apnoea (OSA) in children: an update[J]. Acta Otorhinolaryngol Ital, 2019, 39(5):289-297. DOI: 10.14639/0392-100X-N0262. [41] Wang Y, Li CX, Lin YN, et al. The role of aldosterone in OSA and OSA-related hypertension[J]. Front Endocrinol (Lausanne), 2022, 12:801689. DOI: 10.3389/fendo.2021.801689. [42] Janovic N, Janovic A, Milicic B, et al. Relationship between nasal septum morphology and nasal obstruction symptom severity: computed tomography study[J]. Braz J Otorhinolaryngol, 2022, 88(5):663-668. DOI: 10.1016/j.bjorl.2020.09.004. [43] Cai Y, Goldberg AN, Chang JL. The nose and nasal breathing in sleep apnea[J]. Otolaryngol Clin North Am, 2020, 53(3):385-395. DOI: 10.1016/j.otc.2020.02.002. [44] Roep BO, Thomaidou S, van Tienhoven R, et al. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?) [J]. Nat Rev Endocrinol, 2021, 17(3):150-161. DOI: 10.1038/s41574-020-00443-4. [45] Gu Y, Lian X, Sun W, et al. Diabetes Mellitus induces alterations in metallothionein protein expression and metal levels in the testis and liver[J]. J Int Med Res, 2018, 46(1):185-194. DOI: 10.1177/0300060517708923. [46] Wang AN, Carlos J, Fraser GM, et al. Zucker Diabetic-Sprague Dawley (ZDSD) rat: type 2 diabetes translational research model[J]. Exp Physiol, 2022, 107(4):265-282. DOI: 10.1113/EP089947. [47] 万斌,孙丽薇,张巧香,等.2型糖尿病合并肾性高血压模型的建立及评价[J].动物医学进展,2016,37(5):53-59. DOI:10.3969/j.issn.1007-5038.2016.05.011. |
[1] | 昝兴淳. 通督调神针刺治疗脑卒中后吞咽障碍的研究进展与展望 [J]. 国际医药卫生导报, 2025, 31(9): 1470-1474. |
[2] | 李强. 超声引导下射频消融治疗甲状腺微小乳头状癌的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1258-1260. |
[3] | 洪金全 黄震宇 黄惠炆 黄豪博. 胸苷酸合成酶基因在肿瘤发生发展中的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1260-1265. |
[4] | 蒋萌 赵静如 刘惠 刘庆新. 自噬与缺血性脑血管疾病的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1265-1269. |
[5] | 刘汉清 孙银萍 赵强 任帅. MSI-H/dMMR亚组局部晚期结直肠癌患者新辅助免疫治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1270-1274. |
[6] | 栗玮 王岩 赵伟. Klotho通过抑制NLRP3炎症小体对自发性高血压大鼠肾损伤的影响 [J]. 国际医药卫生导报, 2025, 31(7): 1149-1156. |
[7] | 朱鹏 唐文玲 覃刚. 结直肠癌中微小RNA功能及临床价值进展 [J]. 国际医药卫生导报, 2025, 31(6): 886-890. |
[8] | 潘文昕 姜伟炜. 结肠镜检查时机对缺血性结肠炎患者预后影响的研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 914-917. |
[9] | 张子怡 孙大康. TRIM22抗HIV-1作用机制研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 918-922. |
[10] | 易伟 米倩倩 赵洁 李博宇 王丹. 彩色多普勒血流成像在球后血流动力学检测中的应用 [J]. 国际医药卫生导报, 2025, 31(6): 922-926. |
[11] | 陈秀珠 张凯 韦岩笑 丛晨阳. 甲状腺相关眼病的药物治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 927-929. |
[12] | 李晓童 于胜强. 肾小管细胞来源外泌体在肾纤维化中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 712-718. |
[13] | 张涵 孙婷 王延飞 张肖林 车娟. 移植后淋巴组织增生性疾病在儿童扁桃体腺样体肥大中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 752-757. |
[14] | 莫家婵 范万峰 姜兴岳. 基于磁共振成像的影像组学在垂体腺瘤中的应用现状及进展 [J]. 国际医药卫生导报, 2025, 31(5): 757-760. |
[15] | 刘伟锋 郭媛 唐文洁 杨蕊梦 樊浩 魏新华. “医+X”人才培养模式对医学影像研究生综合能力培养的初探 [J]. 国际医药卫生导报, 2025, 31(4): 530-534. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||