国际医药卫生导报 ›› 2025, Vol. 31 ›› Issue (8): 1265-1269.DOI: 10.3760/cma.j.cn441417-20240621-08008
自噬与缺血性脑血管疾病的研究进展
蒋萌 赵静如 刘惠 刘庆新
滨州医学院附属医院神经内科,滨州 256600
收稿日期:
2024-06-21
出版日期:
2025-04-15
发布日期:
2025-04-20
通讯作者:
刘庆新,Email:neurolqx@163.com
基金资助:
山东省医药卫生科技发展计划(2017WS157);滨州医学院科研计划与科研启动基金(BY2019KJ07)
Research progress on autophagy and ischemic cerebrovascular diseases
Jiang Meng, Zhao Jingru, Liu Hui, Liu Qingxin
Department of Neurology, Binzhou Medical University Hospital, Binzhou 256600, China
Received:
2024-06-21
Online:
2025-04-15
Published:
2025-04-20
Contact:
Liu Qingxin, Email: neurolqx@163.com
Supported by:
Health Science and Technology Development Program of Shandong Province (2017WS157); Research Plan and Research Start-up Fund of Binzhou Medical University (BY2019KJ07)
摘要:
缺血性脑血管疾病(ICVD)是一种严重危害人类健康的疾病,具有发病急、致残与致死率高的特点。近年来,ICVD发病率逐年上升,且发病年龄愈发年轻化。自噬为真核生物所特有的一种自我修复过程的生命现象,是细胞内溶酶体降解吞噬物的生理过程。研究发现,缺血性脑损伤后可以激活自噬,从而影响蛋白质表达及内环境,进而加速或阻止ICVD的进程。自噬的双面性目前研究尚不明确,适度调控自噬激活可能是发挥自噬保护作用的关键。本文从ICVD、自噬相关内容及自噬在ICVD中可能的保护和损伤作用展开论述,以期为ICVD诊治提供新方案和新靶点。
蒋萌 赵静如 刘惠 刘庆新.
自噬与缺血性脑血管疾病的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1265-1269.
Jiang Meng, Zhao Jingru, Liu Hui, Liu Qingxin.
Research progress on autophagy and ischemic cerebrovascular diseases [J]. International Medicine and Health Guidance News, 2025, 31(8): 1265-1269.
[1] Wang XX, Zhang B, Xia R, et al. Inflammation, apoptosis and autophagy as critical players in vascular dementia[J]. Eur Rev Med Pharmacol Sci, 2020,24(18):9601-9614. DOI: 10.26355/eurrev_202009_23048. [2] Ajoolabady A, Wang S, Kroemer G, et al. Targeting autophagy in ischemic stroke: from molecular mechanisms to clinical therapeutics[J]. Pharmacol Ther, 2021,225:107848. DOI:10.1016/j.pharmthera. 2021.107848 [3] Shi Q, Cheng Q, Chen C. The Role of autophagy in the pathogenesis of ischemic stroke[J]. Curr Neuropharmacol, 2021,19(5):629-640. DOI:10.2174/1570159X18666200729101913 [4] Tu QY, Jin H, Ding BR, et al. Reliability, validity, and optimal cutoff score of the montreal cognitive assessment (Changsha version) in ischemic cerebrovascular disease patients of hunan province, China[J]. Dement Geriatr Cogn Dis Extra, 2013,3(1):25-36. DOI: 10.1159/000346845. [5] Lugovaya AV, Emanuel VS, Kalinina NM, et al. Apoptosis and autophagy in the pathogenesis of acute ischemic stroke (review of literature)[J]. Klin Lab Diagn, 2020,65(7):428-434. DOI: 10.18821/0869-2084-2020- 65-7-428-434. [6] 王一茗,束彦页. 自噬在缺血性心脑血管疾病中的作用研究进展[J]. 中国全科医学,2016,19(3):347-351. DOI:10.3969/j.issn.1007-9572.2016.03.023. [7] Brophy ML, Dong Y, Wu H, et al. Eating the dead to keep atherosclerosis at bay[J]. Front Cardiovasc Med, 2017,4:2. DOI: 10.3389/fcvm.2017.00002. [8] Evans TD, Jeong SJ, Zhang X, et al. TFEB and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis[J]. Autophagy, 2018,14(4):724-726. DOI: 10.1080/15548627.2018.1434373. [9] Wu X, Zheng Y, Liu M, et al. BNIP3L/NIX degradation leads to mitophagy deficiency in ischemic brains[J]. Autophagy, 2021,17(8):1934-1946. DOI: 10.1080/15548627.2020.1802089. [10] 王晓平,倪京满.脑缺血再灌注损伤的研究及药物治疗进展[J].中国新药杂志,2016,25(6):659-663,691. [11] Alishahi M, Farzaneh M, Ghaedrahmati F, et al. NLRP3 inflammasome in ischemic stroke: as possible therapeutic target[J]. Int J Stroke, 2019,14(6):574-591. DOI: 10.1177/1747493019841242. [12] Jing J, Liu X, Geng X, et al. Autophagy mechanism of cerebral ischemia injury and intervention of traditional Chinese medicine[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2019,31(10):1299-1301. DOI: 10.3760/cma.j.issn.2095-4352.2019.10.024. [13] 李燕则,郭永清,卫建峰,等. 脑缺血再灌注损伤后自噬机制及自噬相关信号通路的研究进展[J]. 中国当代医药,2018,25(12):29-32. DOI:10.3969/j.issn.1674-4721. 2018.12.008. [14] 费丰敏,褚欢. 缺血性脑血管病患者外周血细胞自噬因子的表达意义[J]. 中国慢性病预防与控制,2017,25(4):286-289. DOI:10.16386/j.cjpccd.issn.1004-6194.2017.04.014. [15] Zhu YQ, Xing H, Dai D, et al. Differential interstrain susceptibility to vertebrobasilar dolichoectasia in a mouse model[J]. AJNR Am J Neuroradiol, 2017,38(3):611-616. DOI: 10.3174/ajnr.A5028. [16] 孙李晴,张智博. 细胞自噬与缺血性脑血管病[J]. 中国实用神经疾病杂志,2015,18(2):137-138. DOI:10.3969/j.issn. 1673-5110.2015.02.091. [17] Zhang Z, Yang X, Song YQ, et al. Autophagy in Alzheimer's disease pathogenesis: therapeutic potential and future perspectives[J]. Ageing Res Rev, 2021 Dec;72:101464. DOI: 10.1016/j.arr.2021.101464. [18] Tyutyunyk-Massey L, Gewirtz DA. Roles of autophagy in breast cancer treatment: target, bystander or benefactor[J]. Semin Cancer Biol, 2020,66:155-162. DOI: 10.1016/j.semcancer.2019.11.008. [19] Choi ME. Autophagy in kidney disease[J]. Annu Rev Physiol, 2020,82:297-322. DOI: 10.1146/annurev- physiol-021119-034658. [20] 张宁宁,陈永锋,康品方,等. 自噬在肺动脉高压疾病中的作用及研究进展[J]. 淮海医药,2022,40(5):537-540. DOI:10.14126/j.cnki.1008-7044.2022.05.028. [21] Hu Y, Luo Y, Zheng Y. Nrf2 pathway and autophagy crosstalk: new insights into therapeutic strategies for ischemic cerebral vascular diseases[J]. Antioxidants (Basel), 2022,11(9):1747. DOI: 10.3390/antiox11091747. [22] Pugsley HR. Assessing autophagic flux by measuring LC3, p62, and LAMP1 co-localization using multispectral imaging flow cytometry[J]. J Vis Exp, 2017(125):55637. DOI: 10.3791/55637. [23] Ceccariglia S, Cargnoni A, Silini AR, et al. Autophagy: a potential key contributor to the therapeutic action of mesenchymal stem cells[J]. Autophagy, 2020,16(1):28-37. DOI: 10.1080/15548627.2019.1630223. [24] Du J, Teng RJ, Guan T, et al. Role of autophagy in angiogenesis in aortic endothelial cells[J]. Am J Physiol Cell Physiol, 2012,302(2):C383-391. DOI: 10.1152/ajpcell.00164.2011. [25] Yao H, Li J, Liu Z, et al. Ablation of endothelial Atg7 inhibits ischemia-induced angiogenesis by upregulating Stat1 that suppresses Hif1a expression[J]. Autophagy, 2023,19(5):1491-1511. DOI: 10.1080/15548627. 2022.2139920. [26] Liu X, Tian F, Wang S, et al. Astrocyte autophagy flux protects neurons against oxygen-glucose deprivation and ischemic/reperfusion injury[J]. Rejuvenation Res, 2018,21(5):405-415. DOI: 10.1089/rej.2017.1999. [27] 乔赵娜,黄传江,韩玉亮,等. 细胞自噬在缺血性脑血管病中的作用研究进展[J]. 中国老年学杂志,2013,33(16):4093-4095. DOI:10.3969/j.issn.1005-9202.2013.16.149. [28] Perez-Alvarez MJ, Villa Gonzalez M, Benito-Cuesta I, et al. Role of mTORC1 controlling proteostasis after brain ischemia[J]. Front Neurosci, 2018,12:60. DOI: 10.3389/fnins.2018.00060. [29] 付乐. AMPK-mTOR信号通路对自噬的影响在小鼠局灶性脑缺血损伤中的作用[D]. 南昌:南昌大学,2015. DOI:10.7666/d.D692314. [30] Pei X, Li Y, Zhu L, et al. Astrocyte-derived exosomes suppress autophagy and ameliorate neuronal damage in experimental ischemic stroke[J]. Exp Cell Res, 2019,382(2):111474. DOI: 10.1016/j.yexcr.2019.06.019. [31] Li J, Liu Z, Wang L, et al. Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors[J]. Biosci Rep, 2019,39(10):BSR20190749. DOI: 10.1042/BSR20190749. [32] Norrving B, Kissela B. The global burden of stroke and need for a continuum of care[J]. Neurology, 2013,80(3 Suppl 2):S5-12. DOI: 10.1212/WNL.0b013e3182762397. [33] Zhang Q, Yao M, Qi J, et al. Puerarin inhibited oxidative stress and alleviated cerebral ischemia-reperfusion injury through PI3K/Akt/Nrf2 signaling pathway[J]. Front Pharmacol, 2023,14:1134380. DOI: 10.3389/fphar.2023.1134380. [34] Qiao W, Zang Z, Li D, et al. Liensinine ameliorates ischemia-reperfusion-induced brain injury by inhibiting autophagy via PI3K/AKT signaling[J]. Funct Integr Genomics, 2023,23(2):140. DOI: 10.1007/s10142-023-01063-7. [35] Chen DP, Hou SH, Chen YG, et al. L-butyl phthalein improves neural function of vascular dementia mice by regulating the PI3K/AKT signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2018,22(16):5377-5384. DOI: 10.26355/eurrev_201808_15740. [36] Lee KM, Bang J, Kim BY, et al. Fructus mume alleviates chronic cerebral hypoperfusion-induced white matter and hippocampal damage via inhibition of inflammation and downregulation of TLR4 and p38 MAPK signaling[J]. BMC Complement Altern Med, 2015,15:125. DOI: 10.1186/s12906-015-0652-1. [37] Yang S, Wang H, Yang Y, et al. Baicalein administered in the subacute phase ameliorates ischemia-reperfusion-induced brain injury by reducing neuroinflammation and neuronal damage[J]. Biomed Pharmacother, 2019,117:109102. DOI: 10.1016/j.biopha.2019.109102. [38] Roy Choudhury G, Ryou MG, Poteet E, et al. Involvement of p38 MAPK in reactive astrogliosis induced by ischemic stroke[J]. Brain Res, 2014,1551:45-58. DOI: 10.1016/j.brainres.2014.01.013. [39] Wang PR, Wang JS, Zhang C, et al. Huang-Lian-Jie-Du-Decotion induced protective autophagy against the injury of cerebral ischemia/reperfusion via MAPK-mTOR signaling pathway[J]. J Ethnopharmacol, 2013,149(1):270-280. DOI: 10.1016/j.jep.2013.06.035. [40] Yang H, Li L, Zhou K, et al. Shengmai injection attenuates the cerebral ischemia/reperfusion induced autophagy via modulation of the AMPK, mTOR and JNK pathways[J]. Pharm Biol, 2016,54(10):2288-2297. DOI: 10.3109/13880209.2016.1155625. [41] 徐继伟. 依达拉奉对SAH大鼠海马区JNK-自噬信号通路的影响[D].唐山:华北理工大学,2016. DOI:10.7666/d.D01086048. [42] Zhao Y, Shi X, Wang J, et al. Betulinic acid ameliorates cerebral injury in middle cerebral artery occlusion rats through regulating autophagy[J]. ACS Chem Neurosci, 2021,12(15):2829-2837. DOI: 10.1021/acschemneuro.1c00198. [43] Mei ZG, Huang YG, Feng ZT, et al. Electroacupuncture ameliorates cerebral ischemia/reperfusion injury by suppressing autophagy via the SIRT1-FOXO1 signaling pathway[J]. Aging (Albany NY), 2020,12(13):13187-13205. DOI: 10.18632/aging.103420. [44] 齐玉彦,张淑岩,沈鹏,等. 胱抑素C与缺血性脑血管病的研究进展[J]. 卒中与神经疾病,2018,25(3):329-331. DOI:10.3969/j.issn.1007-0478.2018.03.025. [45] Yang Z, Lin P, Chen B, et al. Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5)[J]. Autophagy, 2021,17(10):3048-3067. DOI: 10.1080/15548627.2020.1851897. [46] Xu S, Huang P, Yang J, et al. Calycosin alleviates cerebral ischemia/reperfusion injury by repressing autophagy via STAT3/FOXO3a signaling pathway[J]. Phytomedicine, 2023,115:154845. DOI: 10.1016/j.phymed.2023.154845. [47] Shen L, Gan Q, Yang Y, et al. Mitophagy in cerebral ischemia and ischemia/reperfusion injury[J]. Front Aging Neurosci, 2021,13:687246. DOI: 10.3389/fnagi. 2021.687246. |
[1] | 李强. 超声引导下射频消融治疗甲状腺微小乳头状癌的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1258-1260. |
[2] | 洪金全 黄震宇 黄惠炆 黄豪博. 胸苷酸合成酶基因在肿瘤发生发展中的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1260-1265. |
[3] | 刘汉清 孙银萍 赵强 任帅. MSI-H/dMMR亚组局部晚期结直肠癌患者新辅助免疫治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1270-1274. |
[4] | 王笑楠 焦玉婷 房娅琪 段欢桐 杨智. 超声在银屑病关节炎及其共病诊断中的应用价值 [J]. 国际医药卫生导报, 2025, 31(7): 1130-1134. |
[5] | 朱鹏 唐文玲 覃刚. 结直肠癌中微小RNA功能及临床价值进展 [J]. 国际医药卫生导报, 2025, 31(6): 886-890. |
[6] | 潘文昕 姜伟炜. 结肠镜检查时机对缺血性结肠炎患者预后影响的研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 914-917. |
[7] | 张子怡 孙大康. TRIM22抗HIV-1作用机制研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 918-922. |
[8] | 易伟 米倩倩 赵洁 李博宇 王丹. 彩色多普勒血流成像在球后血流动力学检测中的应用 [J]. 国际医药卫生导报, 2025, 31(6): 922-926. |
[9] | 陈秀珠 张凯 韦岩笑 丛晨阳. 甲状腺相关眼病的药物治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 927-929. |
[10] | 张雪锋 吕艳艳 戴璐. 血清JAK-STAT信号通路相关蛋白对类风湿性关节炎患者的预后评估 [J]. 国际医药卫生导报, 2025, 31(6): 960-964. |
[11] | 李晓童 于胜强. 肾小管细胞来源外泌体在肾纤维化中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 712-718. |
[12] | 张涵 孙婷 王延飞 张肖林 车娟. 移植后淋巴组织增生性疾病在儿童扁桃体腺样体肥大中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 752-757. |
[13] | 莫家婵 范万峰 姜兴岳. 基于磁共振成像的影像组学在垂体腺瘤中的应用现状及进展 [J]. 国际医药卫生导报, 2025, 31(5): 757-760. |
[14] | 刘伟锋 郭媛 唐文洁 杨蕊梦 樊浩 魏新华. “医+X”人才培养模式对医学影像研究生综合能力培养的初探 [J]. 国际医药卫生导报, 2025, 31(4): 530-534. |
[15] | 郝慧慧 冯安华 马晓林 李敖 丁传华. SOAP思维模式下融合案例与问题教学模式在临床药学实习带教中的应用 [J]. 国际医药卫生导报, 2025, 31(4): 539-542. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||