国际医药卫生导报 ›› 2025, Vol. 31 ›› Issue (8): 1270-1274.DOI: 10.3760/cma.j.cn441417-20240924-08009
MSI-H/dMMR亚组局部晚期结直肠癌患者新辅助免疫治疗研究进展
刘汉清1 孙银萍2 赵强2 任帅2
1滨州医学院,滨州 256600;2淄博市中心医院,淄博 250036
收稿日期:
2024-09-24
出版日期:
2025-04-15
发布日期:
2025-04-20
通讯作者:
赵强,Email:qiangzhao1973@163.com
基金资助:
国家中医药管理局科技司-山东省卫生健康委员会共建中医药科技项目(GZY-KJS-SD-2023-010);山东省中医药科技项目(Z-2022013);北京科创医学发展基金会科技项目(KC2023-JX-0288-PM91);山东省自然科学基金青年项目(ZR2022QH392);淄博市卫生健康青年卓越人才孵站培养基金(202210)
Research progress on neoadjuvant immunotherapy for MSI-H/dMMR subtype patients with locally advanced colorectal cancer
Liu Hanqing1, Sun Yinping2, Zhao Qiang2, Ren Shuai2
1 Binzhou Medical University, Binzhou 256600, China; 2 Zibo Central Hospital, Zibo 250036, China
Received:
2024-09-24
Online:
2025-04-15
Published:
2025-04-20
Contact:
Zhao Qiang, Email: qiangzhao1973@163.com
Supported by:
Science and Technology Project of Traditional Chinese Medicine Jointly Built by Department of Science and Technology, State Administration of Traditional Chinese Medicine and Shandong Provincial Health Commission (GZY-KJS-SD-2023-010); Science and Technology Project of Traditional Chinese Medicine in Shandong (Z-2022013); Science and Technology Project of Beijing Science and Technology Innovation Medical Development Foundation (KC2023-JX-0288-PM91); Youth Project of Shandong Provincial Natural Science Foundation (ZR2022QH392); Zibo City Health Youth Excellent Talent Incubation Station Training Fund (202210)
摘要:
近年来,全程新辅助治疗广泛应用于局部晚期结直肠癌(locally advanced colorectal cancer,LACRC)患者的治疗,显著提高了患者术前肿瘤消退率,降低了术后局部区域复发风险。新辅助免疫治疗在LACRC患者中的应用取得了良好的临床效果。新辅助免疫治疗单用或联合新辅助放化疗续贯手术治疗成为了LACRC患者新的治疗方式。根据错配修复蛋白表达,结直肠癌(colorectal cancer,CRC)可分为微卫星高度不稳定/错配修复功能缺陷(microsatellite hyperinstability/mismatch repair functional defects,MSI-H/dMMR)和非微卫星高度不稳定/错配修复功能完整(non-microsatellite high instability/mismatch repair is complete,非MSI-H/pMMR)2个亚组。MSI-H/dMMR亚组患者从放化疗中取得的临床获益有限,但由于其肿瘤组织中免疫细胞浸润丰富,可以从免疫检查点抑制剂(immune checkpoint inhibitors,ICIs)治疗中获得良好的效果。本文对新辅助免疫治疗在MSI-H/dMMR亚组LACRC患者中的临床应用进行综述,讨论其治疗LACRC患者的优势,为LACRC患者术前新辅助治疗提供参考。
刘汉清 孙银萍 赵强 任帅.
MSI-H/dMMR亚组局部晚期结直肠癌患者新辅助免疫治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1270-1274.
Liu Hanqing, Sun Yinping, Zhao Qiang, Ren Shuai.
Research progress on neoadjuvant immunotherapy for MSI-H/dMMR subtype patients with locally advanced colorectal cancer [J]. International Medicine and Health Guidance News, 2025, 31(8): 1270-1274.
[1] Weng J, Li S, Zhu Z, et al. Exploring immunotherapy in colorectal cancer [J]. J Hematol Oncol, 2022, 15(1): 95. DOI: 10.1186/s13045-022-01294-4. [2] Fan A, Wang B, Wang X, et al. Immunotherapy in colorectal cancer: current achievements and future perspective [J]. Int J Biol Sci, 2021, 17(14): 3837-3849. DOI: 10.7150/ijbs.64077. [3] Zhang X, Wu T, Cai X, et al. Neoadjuvant immunotherapy for MSI-H/dMMR locally advanced colorectal cancer: new strategies and unveiled opportunities [J]. Front Immunol, 2022, 13: 795972. DOI: 10.3389/fimmu.2022.795972. [4] Ciardiello D, Vitiello PP, Cardone C, et al. Immunotherapy of colorectal cancer: challenges for therapeutic efficacy [J]. Cancer Treat Rev, 2019, 76: 22-32. DOI: 10.1016/j.ctrv.2019.04.003. [5] Pei L, Liu Y, Liu L, et al. Roles of cancer-associated fibroblasts (CAFs) in anti- PD-1/PD-L1 immunotherapy for solid cancers [J]. Mol Cancer, 2023, 22(1): 29. DOI: 10.1186/s12943-023-01731-z. [6] Bai Z, Zhou Y, Ye Z, et al. Tumor-infiltrating lymphocytes in colorectal cancer: the fundamental indication and application on immunotherapy [J]. Front Immunol, 2022, 12: 808964. DOI: 10.3389/fimmu.2021.808964. [7] Ding K, Mou P, Wang Z, et al. The next bastion to be conquered in immunotherapy: microsatellite stable colorectal cancer [J]. Front Immunol, 2023, 14: 1298524. DOI: 10.3389/fimmu.2023.1298524. [8] De' Angelis GL, Bottarelli L, Azzoni C, et al. Microsatellite instability in colorectal cancer [J]. Acta Biomed, 2018, 89(9-S): 97-101. DOI: 10.23750/abm.v89i9-S.7960. [9] Chen G, Jin Y, Guan WL, et al. Neoadjuvant PD-1 blockade with sintilimab in mismatch-repair deficient, locally advanced rectal cancer: an open-label, single-centre phase 2 study [J]. Lancet Gastroenterol Hepatol, 2023, 8(5): 422-431. DOI: 10.1016/S2468-1253(22)00439-3. [10] Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon [J]. Science, 1993, 260(5109): 816-819. DOI: 10.1126/science.8484122. [11] Qiu B, Ding PR, Cai L, et al. Outcomes of preoperative chemoradiotherapy followed by surgery in patients with unresectable locally advanced sigmoid colon cancer [J]. Chin J Cancer, 2016, 35(1): 65. DOI: 10.1186/s40880-016-0126-y. [12] Ratti F, Catena M, Di Palo S, et al. Impact of totally laparoscopic combined management of colorectal cancer with synchronous hepatic metastases on severity of complications: a propensity-score-based analysis [J]. Surg Endosc, 2016, 30(11): 4934-4945. DOI: 10.1007/s00464-016-4835-8. [13] Lichtenstern CR, Ngu RK, Shalapour S, et al. Immunotherapy, inflammation and colorectal cancer [J]. Cells, 2020, 9(3): 618. DOI: 10.3390/cells9030618. [14] Seo I, Lee HW, Byun SJ, et al. Neoadjuvant chemoradiation alters biomarkers of anticancer immunotherapy responses in locally advanced rectal cancer [J]. J Immunother Cancer, 2021, 9(3): e001610. DOI: 10.1136/jitc-2020-001610. [15] Wu Y, Zhuang J, Qu Z, et al. Advances in immunotyping of colorectal cancer [J]. Front Immunol, 2023, 14: 1259461. DOI: 10.3389/fimmu.2023.1259461. [16] Yaghoubi N, Soltani A, Ghazvini K, et al. PD-1/ PD-L1 blockade as a novel treatment for colorectal cancer [J]. Biomed Pharmacother, 2019, 110: 312-318. DOI: 10.1016/j.biopha.2018.11.105. [17] Chen JT, Zhou YW, Han TR, et al. Perioperative immune checkpoint inhibition for colorectal cancer: recent advances and future directions [J]. Front Immunol, 2023, 14:1269341. DOI: 10.3389/fimmu.2023.1269341. [18] Cercek A, Lumish M, Sinopoli J, et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer [J]. N Engl J Med, 2022, 386(25): 2363-2376. DOI: 10.1056/NEJMoa2201445. [19] Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study [J]. Lancet Oncol, 2017, 18(9): 1182-1191. DOI: 10.1016/S1470-2045(17)30422-9. [20] Kanani A, Veen T, Søreide K. Neoadjuvant immunotherapy in primary and metastatic colorectal cancer [J]. Br J Surg, 2021, 108(12): 1417-1425. DOI: 10.1093/bjs/znab342. [21] André T, Shiu KK, Kim TW, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer [J]. N Engl J Med, 2020, 383(23):2207-2218. DOI: 10.1056/NEJMoa2017699. [22] André T, Shiu KK, Kim TW, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer [J]. N Engl J Med, 2020, 383(23):2207-2218. DOI: 10.1056/NEJMoa2017699. [23] Qin Q, Yang K, Ma T, et al. Serial circulating tumor DNA in monitoring the effect of neoadjuvant and adjuvant immunotherapy in patients with colon cancer: case series and review of the literature [J]. J Immunother, 2022, 45(8): 358-362. DOI: 10.1097/CJI.0000000000000436. [24] Han K, Tang JH, Liao LE, et al. Neoadjuvant immune checkpoint inhibition improves organ preservation in T4bM0 colorectal cancer with mismatch repair deficiency: a retrospective observational study [J]. Dis Colon Rectum, 2023, 66(10): e996-e1005. DOI: 10.1097/DCR.0000000000002466. [25] Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers [J]. Nat Med, 2020, 26(4): 566-576. DOI: 10.1038/s41591-020-0805-8. [26] Chen M, Chen J, Huang J, et al. Clinical significance of neoadjuvant chemotherapy for locally advanced colorectal cancer patients with deficient mismatch repair: possibly residual value in the era of immunotherapy [J]. Therap Adv Gastroenterol, 2023, 16:1 7562848221150306. DOI: 10.1177/17562848221150306. [27] Lau D, Kalaitzaki E, Church DN, wt al. Rationale and design of the POLEM trial: avelumab plus fluoropyrimidine-based chemotherapy as adjuvant treatment for stage Ⅲ mismatch repair deficient or POLE exonuclease domain mutant colon cancer: a phase Ⅲ randomised study [J]. ESMO Open, 2020, 5(1): e000638. DOI: 10.1136/esmoopen-2019-000638. [28] Zhou P, Wang Y, Qin S, et al. Abscopal effect triggered by radiation sequential mono-immunotherapy resulted in a complete remission of PMMR sigmoid colon cancer [J]. Front Immunol, 2023, 14: 1139527. DOI: 10.3389/fimmu.2023.1139527. [29] Liu S, Zhang Y, Lin Y, et al. Case report: the MSI-L/p-MMR metastatic rectal cancer patient who failed systemic therapy responds to anti-PD-1 immunotherapy after stereotactic body radiation-therapy [J]. Front Immunol, 2022, 13: 981527. DOI: 10.3389/fimmu.2022.981527. [30] Corrò C, Buchs NC, Tihy M, et al. Study protocol of a phase II study to evaluate safety and efficacy of neo-adjuvant pembrolizumab and radiotherapy in localized rectal cancer [J]. BMC Cancer, 2022, 22(1): 772. DOI: 10.1186/s12885-022-09820-w. [31] Li X, Fang C, Wang X, et al. Neoadjuvant treatment of sintilimab plus hypofractionated radiotherapy for MSI-H/dMMR rectal cancer: A prospective, multicenter, phase Ib study [J]. Cancer Med, 2022, 11(23): 4405-4410. DOI: 10.1002/cam4.4720. [32] Zhai ML, Zhang FY, Yang JR, et al. Current status of neoadjuvant therapy for locally advanced rectal cancer in Wuhan Union Hospital Cancer Center [J]. Radiat Oncol, 2022, 17(1): 109. DOI: 10.1186/s13014-022-02081-8. [33] Lin Z, Cai M, Zhang P, et al. Phase Ⅱ, single-arm trial of preoperative short-course radiotherapy followed by chemotherapy and camrelizumab in locally advanced rectal cancer [J]. J Immunother Cancer, 2021, 9(11): e003554. DOI: 10.1136/jitc-2021-003554. [34] Gao J, Zhang X, Yang Z, et al. Interim result of phase Ⅱ, prospective, single-arm trial of long-course chemoradiotherapy combined with concurrent tislelizumab in locally advanced rectal cancer [J]. Front Oncol, 2023, 13: 1057947. DOI: 10.3389/fonc.2023.1057947. [35] Wang Y, Shen L, Wan J, et al. Short-course radiotherapy combined with CAPOX and Toripalimab for the total neoadjuvant therapy of locally advanced rectal cancer: a randomized, prospective, multicentre, double-arm, phase Ⅱ trial (TORCH) [J]. BMC Cancer, 2022, 22(1): 274. DOI: 10.1186/s12885-022-09348-z. [36] Hanna CR, O'Cathail SM, Graham JS, et al. Durvalumab (MEDI 4736) in combination with extended neoadjuvant regimens in rectal cancer: a study protocol of a randomised phase II trial (PRIME-RT) [J]. Radiat Oncol, 2021, 16(1): 163. DOI: 10.1186/s13014-021-01888-1. [37] Keam SJ. Toripalimab: first global approval [J]. Drugs, 2019, 79(5): 573-578. DOI: 10.1007/s40265-019-01076-2. [38] Hu H, Kang L, Zhang J, et al. Neoadjuvant PD-1 blockade with toripalimab, with or without celecoxib, in mismatch repair-deficient or microsatellite instability-high, locally advanced, colorectal cancer (PICC): a single-centre, parallel-group, non-comparative, randomised, phase 2 trial [J]. Lancet Gastroenterol Hepatol, 2022, 7(1): 38-48. DOI: 10.1016/S2468-1253(21)00348-4. [39] Verschoor YL, Van Den Berg J, Beets G, et al. Neoadjuvant nivolumab, ipilimumab, and celecoxib in MMR-proficient and MMR-deficient colon cancers: Final clinical analysis of the NICHE study [J]. J Clin Oncol, 2022, 40(16 Suppl): 3511-3511. DOI: 10.1200/JCO.2022.40.16_suppl.3511. [40] Benson Z, Manjili SH, Habibi M, et al. Conditioning neoadjuvant therapies for improved immunotherapy of cancer [J]. Biochem Pharmacol, 2017, 145: 12-17. DOI: 10.1016/j.bcp.2017.08.007. [41] Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers [J]. Nat Med, 2020, 26(4): 566-576. DOI: 10.1038/s41591-020-0805-8. [42] VERSCHOOR Y L, VAN DEN BERG J, BEETS G, et al. Neoadjuvant nivolumab, ipilimumab, and celecoxib in MMR-proficient and MMR-deficient colon cancers: Final clinical analysis of the NICHE study.[J/OL]. Journal of Clinical Oncology, 2022, 40(16_suppl): 3511-3511. DOI:10.1200/JCO.2022.40.16_suppl.3511. [43] Zhang X, Yang R, Wu T, et al. Efficacy and safety of neoadjuvant monoimmunotherapy with PD-1 inhibitor for dMMR/MSI⁃H locally advanced colorectal cancer: a single-center real-world study [J]. Front Immunol, 2022, 13: 913483. DOI: 10.3389/fimmu.2022.913483. [44] Benson AB, Venook AP, Al-Hawary MM, et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology [J]. J Natl Compr Canc Netw, 2021, 19(3): 329-359. DOI: 10.6004/jnccn.2021.0012. [45] Liu S, Zhang Y, Lin Y, et al. Case report: the MSI-L/p-MMR metastatic rectal cancer patient who failed systemic therapy responds to anti-PD-1 immunotherapy after stereotactic body radiation-therapy [J]. Front Immunol, 2022, 13: 981527. DOI: 10.3389/fimmu.2022.981527. |
[1] | 李强. 超声引导下射频消融治疗甲状腺微小乳头状癌的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1258-1260. |
[2] | 洪金全 黄震宇 黄惠炆 黄豪博. 胸苷酸合成酶基因在肿瘤发生发展中的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1260-1265. |
[3] | 蒋萌 赵静如 刘惠 刘庆新. 自噬与缺血性脑血管疾病的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1265-1269. |
[4] | 朱鹏 唐文玲 覃刚. 结直肠癌中微小RNA功能及临床价值进展 [J]. 国际医药卫生导报, 2025, 31(6): 886-890. |
[5] | 潘文昕 姜伟炜. 结肠镜检查时机对缺血性结肠炎患者预后影响的研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 914-917. |
[6] | 张子怡 孙大康. TRIM22抗HIV-1作用机制研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 918-922. |
[7] | 易伟 米倩倩 赵洁 李博宇 王丹. 彩色多普勒血流成像在球后血流动力学检测中的应用 [J]. 国际医药卫生导报, 2025, 31(6): 922-926. |
[8] | 陈秀珠 张凯 韦岩笑 丛晨阳. 甲状腺相关眼病的药物治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 927-929. |
[9] | 李晓童 于胜强. 肾小管细胞来源外泌体在肾纤维化中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 712-718. |
[10] | 张涵 孙婷 王延飞 张肖林 车娟. 移植后淋巴组织增生性疾病在儿童扁桃体腺样体肥大中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 752-757. |
[11] | 莫家婵 范万峰 姜兴岳. 基于磁共振成像的影像组学在垂体腺瘤中的应用现状及进展 [J]. 国际医药卫生导报, 2025, 31(5): 757-760. |
[12] | 刘伟锋 郭媛 唐文洁 杨蕊梦 樊浩 魏新华. “医+X”人才培养模式对医学影像研究生综合能力培养的初探 [J]. 国际医药卫生导报, 2025, 31(4): 530-534. |
[13] | 郝慧慧 冯安华 马晓林 李敖 丁传华. SOAP思维模式下融合案例与问题教学模式在临床药学实习带教中的应用 [J]. 国际医药卫生导报, 2025, 31(4): 539-542. |
[14] | 洪金全 黄晓玲 黄震宇 黄豪博. 弥漫大B细胞淋巴瘤中脂质代谢异常及其干预的研究进展 [J]. 国际医药卫生导报, 2025, 31(4): 559-562. |
[15] | 王兴兴 张肖林 王延飞. 间充质干细胞在神经退行性疾病中的研究进展 [J]. 国际医药卫生导报, 2025, 31(4): 562-567. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||