[1] Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic [J]. Acta Biomed, 2020, 91(1): 157-160. DOI: 10.23750/abm.v91i1.9397.
[2] Wang H, Wang H, Sun Y, et al. Potential associations between microbiome and COVID-19 [J]. Front Med (Lausanne), 2021, 8:785496. DOI: 10.3389/fmed.2021. 785496.
[3] 中华人民共和国国家卫生健康委员会. 新型冠状病毒肺炎诊疗方案(试行第八版 修订版)[J]. 中华临床感染病杂志,2021,14(2):81-88. DOI:10.3760/cma.j.issn.1674-2397. 2021.02.001.
[4] Yu J, Azzam EI, Jadhav AB, et al. COVID-19: the disease, the immunological challenges, the treatment with pharmaceuticals and low-dose ionizing radiation [J]. Cells, 2021, 10(9): 2212. DOI: 10.3390/cells10092212.
[5] Mortazavi SMJ, Kefayat A, Cai J. Point/Counterpoint. Low-dose radiation as a treatment for COVID-19 pneumonia: a threat or real opportunity? [J]. Med Phys, 2020, 47(9): 3773-3776. DOI: 10.1002/mp.14367.
[6] Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia [J]. Aging Dis, 2020, 11(2): 216-228. DOI: 10.14336/AD.2020.0228.
[7] Harrell CR, Sadikot R, Pascual J, et al. Mesenchymal stem cell-based therapy of inflammatory lung diseases: current understanding and future perspectives [J]. Stem Cells Int, 2019: 4236973. DOI: 10.1155/2019/4236973.
[8] Majumder J, Minko T. Recent developments on therapeutic and diagnostic approaches for COVID-19 [J]. AAPS J, 2021, 23(1): 14. DOI: 10.1208/s12248-020- 00532-2.
[9] Gartner Ⅲ TE, Jayaraman A. Modeling and simulations of polymers: a roadmap[J]. Macromolecules, 2019, 52(3): 755-786.
[10] McNeil SE. Unique benefits of nanotechnology to drug delivery and diagnostics//Characterization of nanoparticles intended for drug delivery[M]. California: Humana Press, 2011: 3-8.
[11] Hashimoto T, Perlot T, Rehman A, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation [J]. Nature, 2012, 487(7408): 477-481. DOI: 10.1038/nature11228.
[12] Keely S, Talley NJ, Hansbro PM. Pulmonary-intestinal cross-talk in mucosal inflammatory disease [J]. Mucosal Immunol, 2012, 5(1): 7-18. DOI: 10.1038/mi.2011.55.
[13] Zuo T, Zhang F, Lui GCY, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization [J]. Gastroenterology, 2020, 159(3):944-955.e8. DOI: 10.1053/j.gastro.2020.05.048.
[14] Gu S, Chen Y, Wu Z, et al. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza [J]. Clin Infect Dis, 2020, 71(10): 2669-2678. DOI: 10.1093/cid/ciaa709.
[15] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [J]. Lancet, 2020, 395(10223): 497-506. DOI: 10.1016/S0140-6736(20)30183-5.
[16] Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study [J]. Lancet, 2020, 395(10223):507-513. DOI: 10.1016/S0140-6736(20)30211-7.
[17] Liang W, Feng Z, Rao S, et al. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus [J]. Gut, 2020, 69(6): 1141-1143. DOI: 10.1136/gutjnl- 2020-320832.
[18] Carfì A, Bernabei R, Landi F, et al. Persistent symptoms in patients after acute COVID-19 [J]. JAMA, 2020, 324(6): 603-605. DOI: 10.1001/jama.2020.12603.
[19] Shi N, Li N, Duan X, et al. Interaction between the gut microbiome and mucosal immune system [J]. Mil Med Res, 2017, 4:14. DOI: 10.1186/s40779-017-0122-9.
[20] Berg D, Clemente JC, Colombel JF. Can inflammatory bowel disease be permanently treated with short-term interventions on the microbiome? [J]. Expert Rev Gastroenterol Hepatol, 2015, 9(6):781-795. DOI: 10.1586/17474124.2015.1013031.
[21] Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease [J]. Cell Res, 2020, 30(6): 492-506. DOI: 10.1038/s41422-020- 0332-7.
[22] Atyeo C, Fischinger S, Zohar T, et al. distinct early serological signatures track with SARS-CoV-2 survival [J]. Immunity, 2020, 53(3):524-532.e4. DOI: 10.1016/j.immuni.2020.07.020.
[23] Kuri-Cervantes L, Pampena MB, Meng W, et al. Comprehensive mapping of immune perturbations associated with severe COVID-19 [J]. Sci Immunol, 2020, 5(49): eabd7114. DOI: 10.1126/sciimmunol.abd7114.
[24] B Bermejo-Martin JF, González-Rivera M, Almansa R, et al. Viral RNA load in plasma is associated with critical illness and a dysregulated host response in COVID-19 [J]. Crit Care, 2020, 24(1):691. DOI: 10.1186/s13054-020- 03398-0.
[25] Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor [J]. Cell, 2020, 181(2): 271-280.e8. DOI: 10.1016/j.cell.2020.02.052.
[26] Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 [J]. Science, 2020, 367(6485):1444-1448. DOI: 10.1126/science.abb2762.
[27] Wang K, Gheblawi M, Oudit GY. Angiotensin converting enzyme 2: a double-edged sword [J]. Circulation, 2020, 142(5):426-428. DOI: 10.1161/CIRCULATIONAHA. 120.047049.
[28] Gu X, Lu Q, Zhang C, et al. Clinical application and progress of fecal microbiota transplantation in liver diseases: a review [J]. Semin Liver Dis, 2021, 41(4):495-506. DOI: 10.1055/s-0041-1732319.
[29] Dhar D, Mohanty A. Gut microbiota and Covid-19- possible link and implications [J]. Virus Res, 2020, 285: 198018. DOI: 10.1016/j.virusres.2020.198018.
[30] Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging [J]. Science, 2011, 333(6046): 1109-1112. DOI: 10.1126/science.1201940.
[31] Sharma L, Riva A. Intestinal barrier function in health and disease-any role of SARS-CoV-2? [J]. Microorganisms, 2020, 8(11): 1744. DOI: 10.3390/microorganisms 8111744.
[32] de Groot P, Nikolic T, Pellegrini S, et al. Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial [J]. Gut, 2021, 70(1): 92-105. DOI: 10.1136/gutjnl-2020-322630.
[33] Vendrik KEW, Ooijevaar RE, de Jong PRC, et al. Fecal microbiota transplantation in neurological disorders [J]. Front Cell Infect Microbiol, 2020, 10: 98. DOI: 10.3389/fcimb.2020.00098.
[34] Amoroso C, Perillo F, Strati F, et al. The role of gut microbiota biomodulators on mucosal immunity and intestinal inflammation [J]. Cells, 2020, 9(5): 1234. DOI: 10.3390/cells9051234.
[35] Cammarota G, Ianiro G, Kelly CR, et al. International consensus conference on stool banking for faecal microbiota transplantation in clinical practice [J]. Gut, 2019, 68(12): 2111-2121. DOI: 10.1136/gutjnl-2019-319548.
[36] Keller JJ, Ooijevaar RE, Hvas CL, et al. A standardised model for stool banking for faecal microbiota transplantation: a consensus report from a multidisciplinary UEG working group [J]. United European Gastroenterol J, 2021, 9(2): 229-247. DOI: 10.1177/2050640620967898.
[37] Mullish BH, Quraishi MN, Segal JP, et al. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridium difficile infection and other potential indications: joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines [J]. Gut, 2018, 67(11):1920-1941. DOI: 10.1136/gutjnl-2018-316818.
[38] Jarmo O, Veli-Jukka A, Eero M. Treatment of Clostridioides (Clostridium) difficile infection[J]. Annals Med, 2020, 52(1-2): 12-20.
[39] Zuo T, Wong SH, Lam K, et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome [J]. Gut, 2018, 67(4):634-643. DOI: 10.1136/gutjnl-2017-313952.
[40] Kelly CR, Yen EF, Grinspan AM, et al. Fecal microbiota transplantation is highly effective in real-world practice: initial results from the FMT national registry [J]. Gastroenterology, 2021, 160(1):183-192.e3. DOI: 10.1053/j.gastro.2020.09.038.
[41] Prescott HC, Dickson RP, Rogers MA, et al. Hospitalization type and subsequent severe sepsis [J]. Am J Respir Crit Care Med, 2015, 192(5):581-588. DOI: 10.1164/rccm.201503-0483OC.
[42] Haak BW, Wiersinga WJ. The role of the gut microbiota in sepsis [J]. Lancet Gastroenterol Hepatol, 2017, 2(2): 135-143. DOI: 10.1016/S2468-1253(16)30119-4.
[43] Kim SM, DeFazio JR, Hyoju SK, et al. Fecal microbiota transplant rescues mice from human pathogen mediated sepsis by restoring systemic immunity [J]. Nat Commun, 2020, 11(1): 2354. DOI: 10.1038/s41467-020-15545-w.
[44] Li S, Lv J, Li J, et al. Intestinal microbiota impact sepsis associated encephalopathy via the vagus nerve [J]. Neurosci Lett, 2018, 662:98-104. DOI: 10.1016/j.neulet.2017.10.008.
[45] Haak BW, Prescott HC, Wiersinga WJ. Therapeutic potential of the gut microbiota in the prevention and treatment of sepsis [J]. Front Immunol, 2018, 9: 2042. DOI: 10.3389/fimmu.2018.02042.
[46] Gai X, Wang H, Li Y, et al. Fecal Microbiota transplantation protects the intestinal mucosal barrier by reconstructing the gut microbiota in a murine model of sepsis [J]. Front Cell Infect Microbiol, 2021, 11: 736204. DOI: 10.3389/fcimb.2021.736204.
[47] Sandler NG, Douek DC. Microbial translocation in HIV infection: causes, consequences and treatment opportunities [J]. Nat Rev Microbiol, 2012, 10(9): 655-666. DOI: 10.1038/nrmicro2848.
[48] Chang PV, Hao L, Offermanns S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition [J]. Proc Natl Acad Sci U S A, 2014, 111(6): 2247-2252. DOI: 10.1073/pnas.1322269111.
[49] Serrano-Villar S, Talavera-Rodríguez A, Gosalbes MJ, et al. Fecal microbiota transplantation in HIV: a pilot placebo-controlled study [J]. Nat Commun, 2021, 12(1):1139. DOI: 10.1038/s41467-021-21472-1.
|