国际医药卫生导报 ›› 2025, Vol. 31 ›› Issue (22): 3698-3703.DOI: 10.3760/cma.j.cn441417-20250515-22001
• 脑卒中专题 • 下一篇
刘晏民 汪临华 李婷婷 宋盈娴 王美玲
收稿日期:2025-05-15
出版日期:2025-11-01
发布日期:2025-11-19
通讯作者:
王美玲,Email:wmc_111@126.com
基金资助:Liu Yanmin, Wang Linhua, Li Tingting, Song Yingxian, Wang Meiling
Received:2025-05-15
Online:2025-11-01
Published:2025-11-19
Contact:
Wang Meiling, Email: wmc_111@126.com
Supported by:摘要: 缺血性脑卒中(IS)作为一种全球高发病率和高病死率的脑血管疾病,一直以来都缺乏有效的治疗手段,而铁死亡作为一种铁依赖性的细胞死亡方式,随着研究进展,其在IS病理过程中的作用被逐渐阐明。铁死亡不仅可以通过铁过载、氧化还原失调和脂质过氧化加剧神经损伤,还可以通过相关信号通路进行调控。目前,针对铁死亡作用机制的抑制剂已被证明能够减轻IS后的神经损伤并改善预后。本文综述了铁死亡在IS中的发病机制、相关信号通路、相关抑制剂的潜在治疗效果以及与其他细胞死亡的交叉作用,旨在为未来临床研究和治疗策略提供新的思路和方向。
刘晏民 汪临华 李婷婷 宋盈娴 王美玲. 铁死亡在缺血性脑卒中的作用机制及研究进展[J]. 国际医药卫生导报, 2025, 31(22): 3698-3703.
Liu Yanmin, Wang Linhua, Li Tingting, Song Yingxian, Wang Meiling. The mechanism and research progress of ferroptosis in ischemic stroke[J]. International Medicine and Health Guidance News, 2025, 31(22): 3698-3703.
| [1] Wang P, Cui Y, Ren Q, et al. Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis[J]. Cell Death Dis, 2021,12(5):447. DOI: 10.1038/s41419-021-03725-5. [2] Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-72. DOI: 10.1016/j.cell.2012.03.042. [3] Zhou Y, Liao J, Mei Z, et al. Insight into crosstalk between ferroptosis and necroptosis: novel therapeutics in ischemic stroke[J]. Oxid Med Cell Longev, 2021,2021:9991001. DOI: 10.1155/2021/9991001. [4] Śliwińska A, Luty J, Aleksandrowicz-Wrona E, et al. Iron status and dietary iron intake in vegetarians[J]. Adv Clin Exp Med, 2018, 27(10):1383-1389. DOI: 10.17219/acem/70527. [5] Tuo QZ, Lei P, Jackman KA, et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke[J]. Mol Psychiatry, 2017, 22(11):1520-1530. DOI: 10.1038/mp.2017.171. [6] Knutson MD. Non-transferrin-bound iron transporters[J]. Free Radic Biol Med, 2019,133:101-111. DOI: 10.1016/j.freeradbiomed.2018.10.413. [7] Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021,12(8):599-620. DOI: 10.1007/s13238-020-00789-5. [8] Wei Z, Xie Y, Wei M, et al. New insights in ferroptosis: Potential therapeutic targets for the treatment of ischemic stroke[J]. Front Pharmacol, 2022,13:1020918. DOI: 10.3389/fphar.2022.1020918. [9] Datta A, Sarmah D, Mounica L, et al. Cell death pathways in ischemic stroke and targeted pharmacotherapy[J]. Transl Stroke Res, 2020, 11(6):1185-1202. DOI: 10.1007/s12975-020-00806-z. [10] Liu J, Guo ZN, Yan XL, et al. Crosstalk between autophagy and ferroptosis and its putative role in ischemic stroke[J]. Front Cell Neurosci, 2020, 14:577403. DOI: 10.3389/fncel.2020.577403. [11] Wang Y, Wu S, Li Q, et al. Pharmacological inhibition of ferroptosis as a therapeutic target for neurodegenerative diseases and strokes[J]. Adv Sci (Weinh), 2023, 10(24):e2300325. DOI: 10.1002/advs.202300325. [12] Zhang Z, Wu Y, Yuan S, et al. Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage[J]. Brain Res, 2018,1701:112-125. DOI: 10.1016/j.brainres.2018.09.012. [13] Wang Y, Hekimi S. Understanding ubiquinone[J]. Trends Cell Biol, 2016, 26(5):367-378. DOI: 10.1016/j.tcb.2015.12.007. [14] Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784):688-692. DOI: 10.1038/s41586-019-1705-2. [15] Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784):693-698. DOI: 10.1038/s41586-019-1707-0. [16] Zhu H, Yang Y, Duan Y, et al. Nrf2/FSP1/CoQ10 axis-mediated ferroptosis is involved in sodium aescinate-induced nephrotoxicity[J]. Arch Biochem Biophys, 2024, 759:110100. DOI: 10.1016/j.abb.2024.110100. [17] Zheng J, Conrad M. The Metabolic Underpinnings of Ferroptosis[J]. Cell Metab, 2020,32(6):920-937. DOI: 10.1016/j.cmet.2020.10.011. [18] Wei X, Yi X, Zhu XH, et al. Posttranslational modifications in ferroptosis[J]. Oxid Med Cell Longev, 2020,2020:8832043. DOI: 10.1155/2020/8832043. [19] Kraft VAN, Bezjian CT, Pfeiffer S, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J]. ACS Cent Sci, 2020, 6(1):41-53. DOI: 10.1021/acscentsci.9b01063. [20] 王静,唐玲,肖婷.舒芬太尼调节AMPK/SIRT1/PGC-1α信号通路对新生大鼠缺血缺氧性脑损伤的保护作用[J].中国优生与遗传杂志,2023,31(2):230-235.DOI:10.13404/j.cnki.cjbhh.2023.02.002. [21] Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy[J]. Proc Natl Acad Sci U S A, 2019, 116(7):2672-2680. DOI: 10.1073/pnas.1821022116. [22] Zhao T, Yu Z, Zhou L, et al. Regulating Nrf2-GPx4 axis by bicyclol can prevent ferroptosis in carbon tetrachloride-induced acute liver injury in mice[J]. Cell Death Discov, 2022, 8(1):380. DOI: 10.1038/s41420-022-01173-4. [23] Xu Y, Liu Y, Li K, et al. COX-2/PGE2 pathway inhibits the ferroptosis induced by cerebral ischemia reperfusion[J]. Mol Neurobiol, 2022,59(3):1619-1631. DOI: 10.1007/s12035-021-02706-1. [24] Chen B, Chen Z, Liu M, et al. Inhibition of neuronal ferroptosis in the acute phase of intracerebral hemorrhage shows long-term cerebroprotective effects[J]. Brain Res Bull, 2019,153:122-132. DOI: 10.1016/j.brainresbull.2019.08.013. [25] Li Y, Wang J, Chen S, et al. miR-137 boosts the neuroprotective effect of endothelial progenitor cell-derived exosomes in oxyhemoglobin-treated SH-SY5Y cells partially via COX2/PGE2 pathway[J]. Stem Cell Res Ther, 2020, 11(1):330. DOI: 10.1186/s13287-020-01836-y. [26] Li Y, Zhang Y, Qiu Q, et al. Energy-stress-mediated AMPK activation promotes GPX4-dependent ferroptosis through the JAK2/STAT3/P53 axis in renal cancer[J]. Oxid Med Cell Longev, 2022, 2022:2353115. DOI: 10.1155/2022/2353115. [27] 谢惠芳,徐如祥,魏继鹏,等. JAK2/STAT3信号转导通路在缺血性脑损伤中作用机制的研究[J]. 中风与神经疾病杂志,2008,25(2):135-138. DOI:10.3969/j.issn.1003-2754.2008.02.002. [28] Zhang Y, Lu X, Tai B, et al. Ferroptosis and its multifaceted roles in cerebral stroke[J]. Front Cell Neurosci, 2021, 15:615372. DOI: 10.3389/fncel.2021.615372. [29] Liu H, An N, Wang L, et al. Protective effect of Xingnaojing injection on ferroptosis after cerebral ischemia injury in MCAO rats and SH-SY5Y cells[J]. J Ethnopharmacol, 2023,301:115836. DOI: 10.1016/j.jep.2022.115836. [30] Millán M, DeGregorio-Rocasolano N, Pérez de la Ossa N, et al. Targeting pro-oxidant iron with deferoxamine as a treatment for ischemic stroke: safety and optimal dose selection in a randomized clinical trial[J]. Antioxidants (Basel), 2021,10(8):1270. DOI: 10.3390/antiox10081270. [31] Scarpellini C, Klejborowska G, Lanthier C, et al. Beyond ferrostatin-1: a comprehensive review of ferroptosis inhibitors[J]. Trends Pharmacol Sci, 2023, 44(12):902-916. DOI: 10.1016/j.tips.2023.08.012. [32] Geng YQ, Qiu LN, Cheng YQ, et al. Alleviating recombinant tissue plasminogen activator-induced hemorrhagic transformation in ischemic stroke via targeted delivery of a ferroptosis inhibitor[J]. Adv Sci (Weinh), 2024, 11(24):e2309517. DOI: 10.1002/advs.202309517. [33] Baruah P, Moorthy H, Ramesh M, et al. A natural polyphenol activates and enhances GPX4 to mitigate amyloid-β induced ferroptosis in Alzheimer's disease[J]. Chem Sci, 2023,14(35):9427-9438. DOI: 10.1039/d3sc02350h. [34] Shimada K, Skouta R, Kaplan A, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis[J]. Nat Chem Biol, 2016, 12(7):497-503. DOI: 10.1038/nchembio.2079. [35] Jiang T, Cheng H, Su J, et al. Gastrodin protects against glutamate-induced ferroptosis in HT-22 cells through Nrf2/HO-1 signaling pathway[J]. Toxicol In Vitro, 2020,62:104715. DOI: 10.1016/j.tiv.2019.104715. [36] 黄凯,蒋世云,陈柳军. 5-脂氧合酶及其抑制剂[J]. 中国生物化学与分子生物学报,2014,30(12):1190-1196. DOI:10.13865/j.cnki.cjbmb.2014.12.05. [37] Tu XK, Zhang HB, Shi SS, et al. 5-LOX inhibitor zileuton reduces inflammatory reaction and ischemic brain damage through the activation of PI3K/Akt signaling pathway[J]. Neurochem Res, 2016, 41(10):2779-2787.DOI: 10.1007/s11064-016-1994-x. [38] Shi Y, Han L, Zhang X, et al. Selenium alleviates cerebral ischemia/reperfusion injury by regulating oxidative stress, mitochondrial fusion and ferroptosis[J]. Neurochem Res, 2022, 47(10):2992-3002. DOI: 10.1007/s11064-022-03643-8. [39] 孙晟杰,涂画,唐励静,罗秀菊,彭军.铁死亡诱导剂和抑制剂的研究进展[J].中国药理学与毒理学杂志,2020,34(8):623-633.DOI:10.3867/j.issn.1000-3002.2020.08.010. [40] Li M, Meng Z, Yu S, et al. Baicalein ameliorates cerebral ischemia-reperfusion injury by inhibiting ferroptosis via regulating GPX4/ACSL4/ACSL3 axis[J]. Chem Biol Interact, 2022, 366:110137. DOI: 10.1016/j.cbi.2022.110137. [41] Yang H, Xia Y, Ma Y, et al. Inhibition of the cGAS-STING pathway: contributing to the treatment of cerebral ischemia-reperfusion injury[J]. Neural Regen Res, 2025, 20(7):1900-1918. DOI: 10.4103/NRR.NRR-D-24-00015. [42] Xu G, Zhang J, Shao C, et al. Puerarin mitigates cerebral ischemia/reperfusion (CIR)-induced ferroptosis by suppressing Ser15 phosphorylation-mediated p53 activation[J]. Free Radic Biol Med, 2025, 237:383-396. DOI: 10.1016/j.freeradbiomed.2025.06.013. [43] Du B, Deng Z, Chen K, et al. Iron promotes both ferroptosis and necroptosis in the early stage of reperfusion in ischemic stroke[J]. Genes Dis, 2024, 11(6):101262. DOI: 10.1016/j.gendis.2024.101262. [44] Dai E, Han L, Liu J, et al. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway[J]. Nat Commun, 2020,11(1):6339. DOI: 10.1038/s41467-020-20154-8. |
| [1] | 赵洲 刘为朋 李宗睿 王睿智 胡宝光. 高血压大鼠模型的研究现状 [J]. 国际医药卫生导报, 2025, 31(9): 1465-1470. |
| [2] | 昝兴淳. 通督调神针刺治疗脑卒中后吞咽障碍的研究进展与展望 [J]. 国际医药卫生导报, 2025, 31(9): 1470-1474. |
| [3] | 苗森皓 李秀国. 基质金属蛋白酶及基质金属蛋白酶抑制剂在慢性鼻窦炎中的影响 [J]. 国际医药卫生导报, 2025, 31(8): 1254-1257. |
| [4] | 李强. 超声引导下射频消融治疗甲状腺微小乳头状癌的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1258-1260. |
| [5] | 洪金全 黄震宇 黄惠炆 黄豪博. 胸苷酸合成酶基因在肿瘤发生发展中的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1260-1265. |
| [6] | 蒋萌 赵静如 刘惠 刘庆新. 自噬与缺血性脑血管疾病的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1265-1269. |
| [7] | 刘汉清 孙银萍 赵强 任帅. MSI-H/dMMR亚组局部晚期结直肠癌患者新辅助免疫治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1270-1274. |
| [8] | 侯曦 丁琪 申晓稚 杨丹 李许涛. 通窍涤痰汤联合针刺治疗缺血性脑卒中急性期患者的临床研究 [J]. 国际医药卫生导报, 2025, 31(8): 1302-1306. |
| [9] | 朱鹏 唐文玲 覃刚. 结直肠癌中微小RNA功能及临床价值进展 [J]. 国际医药卫生导报, 2025, 31(6): 886-890. |
| [10] | 潘文昕 姜伟炜. 结肠镜检查时机对缺血性结肠炎患者预后影响的研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 914-917. |
| [11] | 张子怡 孙大康. TRIM22抗HIV-1作用机制研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 918-922. |
| [12] | 易伟 米倩倩 赵洁 李博宇 王丹. 彩色多普勒血流成像在球后血流动力学检测中的应用 [J]. 国际医药卫生导报, 2025, 31(6): 922-926. |
| [13] | 陈秀珠 张凯 韦岩笑 丛晨阳. 甲状腺相关眼病的药物治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 927-929. |
| [14] | 李晓童 于胜强. 肾小管细胞来源外泌体在肾纤维化中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 712-718. |
| [15] | 张涵 孙婷 王延飞 张肖林 车娟. 移植后淋巴组织增生性疾病在儿童扁桃体腺样体肥大中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 752-757. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||