国际医药卫生导报 ›› 2025, Vol. 31 ›› Issue (20): 3402-3406.DOI: 10.3760/cma.j.cn441417-20250423-20012
非酒精性脂肪肝病的发病机制与临床治疗研究进展
刘梦凡1 张凌云2
1滨州医学院第二临床医学院,烟台 264100;2滨州医学院烟台附属医院全科医学科,烟台 264100
收稿日期:2025-04-23
出版日期:2025-10-15
发布日期:2025-10-27
通讯作者:
张凌云,Email:gpzhang2022@126.com
基金资助:山东省医药卫生科技发展计划(2018WS535)
Research progress on pathogenesis and clinical treatment of non-alcoholic fatty liver disease
Liu Mengfan1, Zhang Lingyun2
1 Second Clinical Medical College, Binzhou Medical University, Yantai 264100, China; 2 Department of General Practice, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
Received:2025-04-23
Online:2025-10-15
Published:2025-10-27
Contact:
Zhang Lingyun, Email: gpzhang2022@126.com
Supported by:Program for Development of Medical and Health Science and Technology in Shandong Province (2018WS535)
摘要:
非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)是一种慢性肝病,其发病机制与胰岛素抵抗、脂质代谢失衡及细胞应激反应等紧密关联,是一种与全身代谢紊乱相关的复杂疾病。NAFLD已成为全球慢性肝病的首要病因,临床仍缺乏特异性治疗手段。本文系统综述了NAFLD的核心病理机制与临床治疗进展,以期为深入理解NAFLD的病理生理过程、开发新的诊断和治疗策略提供理论依据。
刘梦凡 张凌云.
非酒精性脂肪肝病的发病机制与临床治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(20): 3402-3406.
Liu Mengfan, Zhang Lingyun.
Research progress on pathogenesis and clinical treatment of non-alcoholic fatty liver disease [J]. International Medicine and Health Guidance News, 2025, 31(20): 3402-3406.
| [1] Rong L, Zou J, Ran W, et al. Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD)[J]. Front Endocrinol (Lausanne), 2023,13:1087260. DOI: 10.3389/fendo.2022.1087260. [2] Targher G, Byrne CD, Tilg H. NAFLD and increased risk of cardiovascular disease: clinical associations, pathophysiological mechanisms and pharmacological implications[J]. Gut, 2020, 69(9):1691-1705. DOI: 10.1136/gutjnl-2020-320622. [3] Badmus OO, Hillhouse SA, Anderson CD, et al. Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways[J]. Clin Sci (Lond), 2022, 136(18):1347-1366. DOI: 10.1042/CS20220572. [4] Scorletti E, Carr RM. A new perspective on NAFLD: focusing on lipid droplets[J]. J Hepatol, 2022, 76(4):934-945. DOI: 10.1016/j.jhep.2021.11.009. [5] Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism[J]. Mol Metab, 2021, 50:101238. DOI: 10.1016/j.molmet.2021.101238. [6] Ebrahimi M, Seyedi SA, Nabipoorashrafi SA, et al. Lipid accumulation product (LAP) index for the diagnosis of nonalcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis[J]. Lipids Health Dis, 2023, 22(1):41. DOI: 10.1186/s12944-023-01802-6. [7] Berk PD, Verna EC. Nonalcoholic fatty liver disease: lipids and insulin resistance[J]. Clin Liver Dis, 2016, 20(2):245-262. DOI: 10.1016/j.cld.2015.10.007. [8] Zhang R, Zhang K. A unified model for regulating lipoprotein lipase activity[J]. Trends Endocrinol Metab, 2024, 35(6):490-504. DOI: 10.1016/j.tem.2024.02.016. [9] Henderson GC. Plasma free fatty acid concentration as a modifiable risk factor for metabolic disease[J]. Nutrients, 2021, 13(8):2590. DOI: 10.3390/nu13082590. [10] McGlinchey AJ, Govaere O, Geng D, et al. Metabolic signatures across the full spectrum of non-alcoholic fatty liver disease[J]. JHEP Rep, 2022, 4(5):100477. DOI: 10.1016/j.jhepr.2022.100477. [11] Yao Z, Gong Y, Chen W, et al. Upregulation of WDR6 drives hepatic de novo lipogenesis in insulin resistance in mice[J]. Nat Metab, 2023, 5(10):1706-1725. DOI: 10.1038/s42255-023-00896-7. [12] Yuan Y, Xu J, Jiang Q, et al. Ficolin 3 promotes ferroptosis in HCC by downregulating IR/SREBP axis-mediated MUFA synthesis[J]. J Exp Clin Cancer Res, 2024, 43(1):133. DOI: 10.1186/s13046-024-03047-2. [13] Shokri B, Mohebbi H, Mehrabani J. Amelioration of fructose-induced hepatic lipid accumulation by vitamin D3 supplementation and high-intensity interval training in male Sprague-Dawley rats[J]. Lipids Health Dis, 2024, 23(1):362. DOI: 10.1186/s12944-024-02347-y. [14] Dewidar B, Mastrototaro L, Englisch C, et al. Alterations of hepatic energy metabolism in murine models of obesity, diabetes and fatty liver diseases[J]. EBioMedicine, 2023, 94:104714. DOI: 10.1016/j.ebiom.2023.104714. [15] Paul B, Lewinska M, Andersen JB. Lipid alterations in chronic liver disease and liver cancer[J]. JHEP Rep, 2022, 4(6):100479. DOI: 10.1016/j.jhepr.2022.100479. [16] Ly LD, Xu S, Choi SK, et al. Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes[J]. Exp Mol Med, 2017, 49(2): e291. DOI: 10.1038/emm.2016.157. [17] Allameh A, Niayesh-Mehr R, Aliarab A, et al. Oxidative stress in liver pathophysiology and disease[J]. Antioxidants (Basel), 2023, 12(9):1653. DOI: 10.3390/antiox12091653. [18] Sharma P, Nandave M, Nandave D, et al. Reactive oxygen species (ROS)-mediated oxidative stress in chronic liver diseases and its mitigation by medicinal plants[J]. Am J Transl Res, 2023, 15(11):6321-6341. [19] Chen P, Yao L, Yuan M, et al. Mitochondrial dysfunction: a promising therapeutic target for liver diseases[J]. Genes Dis, 2023, 11(3):101115. DOI: 10.1016/j.gendis.2023.101115. [20] Du D, Liu C, Qin M, et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma[J]. Acta Pharm Sin B, 2022, 12(2):558-580. DOI: 10.1016/j.apsb.2021.09.019. [21] Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiol Rev, 2014, 94(3): 909-950. DOI: 10.1152/physrev.00026.2013. [22] Ajoolabady A, Kaplowitz N, Lebeaupin C, et al. Endoplasmic reticulum stress in liver diseases[J]. Hepatology, 2023, 77(2):619-639. DOI: 10.1002/hep.32562. [23] Kang Z, Chen F, Wu W, et al. UPRmt and coordinated UPRER in type 2 diabetes[J]. Front Cell Dev Biol, 2022, 10:974083. DOI: 10.3389/fcell.2022.974083. [24] Hendrix S, Zelcer N. A new SPRING in lipid metabolism[J]. Curr Opin Lipidol, 2023, 34(5):201-207. DOI: 10.1097/MOL.0000000000000894. [25] Ferré P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c[J]. Diabetes Obes Metab, 2010, 12 Suppl 2:83-92. DOI: 10.1111/j.1463-1326.2010.01275.x. [26] Kim C, Kim B. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: a review[J]. Nutrients, 2018, 10(8):1021. DOI: 10.3390/nu10081021. [27] Tang H, Kang R, Liu J, et al. ATF4 in cellular stress, ferroptosis, and cancer[J]. Arch Toxicol, 2024, 98(4):1025-1041. DOI: 10.1007/s00204-024-03681-x. [28] Ding J, Ji R, Wang Z, et al. Cardiovascular protection of YiyiFuzi powder and the potential mechanisms through modulating mitochondria-endoplasmic reticulum interactions[J]. Front Pharmacol, 2024, 15:1405545. DOI: 10.3389/fphar.2024.1405545. [29] Branković M, Jovanović I, Dukić M, et al. Lipotoxicity as the leading cause of non-alcoholic steatohepatitis[J]. Int J Mol Sci, 2022, 23(9): 5146. DOI: 10.3390/ijms23095146. [30] Apostolopoulou M, Gordillo R, Koliaki C, et al. Specific hepatic sphingolipids relate to insulin resistance, oxidative stress, and inflammation in nonalcoholic steatohepatitis[J]. Diabetes Care, 2018, 41(6): 1235-1243. DOI: 10.2337/dc17-1318. [31] Rivera-Andrade A, Álvarez CS. The importance of bile Acids in NAFLD: current evidence and future directions [J]. Ann Hepatol, 2022, 27(6):100773. DOI: 10.1016/j.aohep.2022.100773. [32] Rui L. Energy metabolism in the liver[J]. Compr Physiol, 2014, 4(1):177-197. DOI: 10.1002/cphy.c130024. [33] Yang W, Zhu L, Lai S, et al. Cimifugin ameliorates lipotoxicity-induced hepatocyte damage and steatosis through TLR4/p38 MAPK- and SIRT1-involved pathways[J]. Oxid Med Cell Longev, 2022, 2022:4557532. DOI: 10.1155/2022/4557532. [34] Gao H, Jin Z, Bandyopadhyay G, et al. MiR-690 treatment causes decreased fibrosis and steatosis and restores specific Kupffer cell functions in NASH[J]. Cell Metab, 2022, 34(7):978-990.e4. DOI: 10.1016/j.cmet.2022.05.008. [35] Cai ZL, Wang LY, Zhang BY, et al. Mediterranean diet for cardiovascular disease: an evidence mapping study[J]. Public Health Nutr, 2024, 27(1):e118. DOI: 10.1017/S1368980024000776. [36] Muffone ARMC, de Oliveira Lübke PDP, Rabito EI. Mediterranean diet and infertility: a systematic review with meta-analysis of cohort studies[J]. Nutr Rev, 2023, 81(7):775-789. DOI: 10.1093/nutrit/nuac087. [37] Sakasai-Sakai A, Takata T, Takino JI, et al. The relevance of toxic AGEs (TAGE) cytotoxicity to NASH pathogenesis: a mini-review[J]. Nutrients, 2019, 11(2):462. DOI: 10.3390/nu11020462. [38] Berná G, Romero-Gomez M. The role of nutrition in non-alcoholic fatty liver disease: pathophysiology and management[J]. Liver Int, 2020, 40 Suppl 1:102-108. DOI: 10.1111/liv.14360. [39] Salman MA, Salman AA, Abdelsalam A, et al. Laparoscopic sleeve gastrectomy on the horizon as a promising treatment modality for NAFLD[J]. Obes Surg, 2020, 30(1):87-95. DOI: 10.1007/s11695-019-04118-6. [40] Esquivel CM, Garcia M, Armando L, et al. Laparoscopic sleeve gastrectomy resolves NAFLD: another formal indication for bariatric surgery? [J] Obes Surg, 2018, 28(12):4022-4033. DOI: 10.1007/s11695-018-3466-7. [41] Yeo SC, Ong WM, Cheng KSA, et al. Weight loss after bariatric surgery predicts an improvement in the non-alcoholic fatty liver disease (NAFLD) fibrosis score[J]. Obes Surg, 2019, 29(4):1295-1300. DOI: 10.1007/s11695-018-03676-5. [42] Karlsson C, Wallenius K, Walentinsson A, et al. Identification of proteins associated with the early restoration of insulin sensitivity after biliopancreatic diversion[J]. J Clin Endocrinol Metab, 2020, 105(11): e4157-e4168. DOI: 10.1210/clinem/dgaa558. [43] Slouha E, Elkersh EM, Shay A, et al. Significance of hormone alteration following bariatric surgery[J]. Cureus, 2023, 15(11): e49053. DOI: 10.7759/cureus.49053. [44] Loosen SH, Demir M, Kunstein A, et al. Variables associated with increased incidence of non-alcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes[J]. BMJ Open Diabetes Res Care, 2021, 9(1): e002243. DOI: 10.1136/bmjdrc-2021-002243. [45] Kumar DP, Caffrey R, Marioneaux J, et al. The PPAR α/γ agonist saroglitazar improves insulin resistance and steatohepatitis in a diet induced animal model of nonalcoholic fatty liver disease[J]. Sci Rep, 2020, 10(1):9330. DOI: 10.1038/s41598-020-66458-z. [46] Ma K, Saha PK, Chan L, et al. Farnesoid X receptor is essential for normal glucose homeostasis[J]. J Clin Invest, 2006, 116(4): 1102-1109. DOI: 10.1172/JCI25604. [47] Patel K, Harrison SA, Elkhashab M, et al. Cilofexor, a nonsteroidal fxr agonist, in patients with noncirrhotic nash: a phase 2 randomized controlled trial[J]. Hepatology, 2020, 72(1):58-71. DOI: 10.1002/hep.31205. [48] Zhang E, Zhao Y, Hu H. Impact of sodium glucose cotransporter 2 inhibitors on nonalcoholic fatty liver disease complicated by diabetes mellitus[J]. Hepatol Commun, 2021, 5(5): 736-748. DOI: 10.1002/hep4.1611. |
| [1] | 赵洲 刘为朋 李宗睿 王睿智 胡宝光. 高血压大鼠模型的研究现状 [J]. 国际医药卫生导报, 2025, 31(9): 1465-1470. |
| [2] | 昝兴淳. 通督调神针刺治疗脑卒中后吞咽障碍的研究进展与展望 [J]. 国际医药卫生导报, 2025, 31(9): 1470-1474. |
| [3] | 李强. 超声引导下射频消融治疗甲状腺微小乳头状癌的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1258-1260. |
| [4] | 洪金全 黄震宇 黄惠炆 黄豪博. 胸苷酸合成酶基因在肿瘤发生发展中的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1260-1265. |
| [5] | 蒋萌 赵静如 刘惠 刘庆新. 自噬与缺血性脑血管疾病的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1265-1269. |
| [6] | 刘汉清 孙银萍 赵强 任帅. MSI-H/dMMR亚组局部晚期结直肠癌患者新辅助免疫治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1270-1274. |
| [7] | 朱鹏 唐文玲 覃刚. 结直肠癌中微小RNA功能及临床价值进展 [J]. 国际医药卫生导报, 2025, 31(6): 886-890. |
| [8] | 潘文昕 姜伟炜. 结肠镜检查时机对缺血性结肠炎患者预后影响的研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 914-917. |
| [9] | 张子怡 孙大康. TRIM22抗HIV-1作用机制研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 918-922. |
| [10] | 易伟 米倩倩 赵洁 李博宇 王丹. 彩色多普勒血流成像在球后血流动力学检测中的应用 [J]. 国际医药卫生导报, 2025, 31(6): 922-926. |
| [11] | 陈秀珠 张凯 韦岩笑 丛晨阳. 甲状腺相关眼病的药物治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 927-929. |
| [12] | 李晓童 于胜强. 肾小管细胞来源外泌体在肾纤维化中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 712-718. |
| [13] | 张涵 孙婷 王延飞 张肖林 车娟. 移植后淋巴组织增生性疾病在儿童扁桃体腺样体肥大中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 752-757. |
| [14] | 莫家婵 范万峰 姜兴岳. 基于磁共振成像的影像组学在垂体腺瘤中的应用现状及进展 [J]. 国际医药卫生导报, 2025, 31(5): 757-760. |
| [15] | 刘伟锋 郭媛 唐文洁 杨蕊梦 樊浩 魏新华. “医+X”人才培养模式对医学影像研究生综合能力培养的初探 [J]. 国际医药卫生导报, 2025, 31(4): 530-534. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||