国际医药卫生导报 ›› 2025, Vol. 31 ›› Issue (20): 3395-3402.DOI: 10.3760/cma.j.cn441417-20250423-20011
从炎症到癌变:溃疡性结肠炎向结直肠癌进展的分子机制与干预策略
冯子钊1 姜伟炜2
1滨州医学院第二临床医学院,烟台 264100;2滨州医学院烟台附属医院消化内科,烟台 264100
收稿日期:2025-04-23
出版日期:2025-10-15
发布日期:2025-10-27
通讯作者:
姜伟炜,Email:122743098@qq.com
基金资助:山东省医药卫生科技项目(202303031100)
From inflammation to carcinogenesis: molecular mechanisms and intervention strategies in progression from ulcerative colitis to colorectal cancer
Feng Zizhao1, Jiang Weiwei2
1 Second Clinical Medical College, Binzhou Medical University, Yantai 264100, China; 2 Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
Received:2025-04-23
Online:2025-10-15
Published:2025-10-27
Contact:
Jiang Weiwei, Email: 122743098@qq.com
Supported by:Shandong Provincial Medical and Health Science and Technology Project (202303031100)
摘要:
溃疡性结肠炎相关结直肠癌(ulcerative colitis-related colorectal cancer,UC-CRC)是一种典型的炎症相关癌症,其癌变机制独特且复杂,明确其核心机制对于早期诊断和精准防控具有重要临床意义。本文系统综述了慢性炎症驱动的DNA损伤、特征性遗传与表观遗传改变、肿瘤微环境重塑、免疫逃逸机制及肠道微生态失衡在溃疡性结肠炎癌变过程中的作用与研究进展。研究表明,UC-CRC在遗传学特征方面表现为p53突变早期发生、微卫星不稳定性显著增加、KRAS和APC突变相对延迟;在肿瘤微环境中则以癌相关成纤维细胞活化、血管新生和肿瘤干细胞异常扩增为特征;而巨噬细胞极化、树突状细胞功能障碍及T细胞耗竭等免疫逃逸机制则进一步促进了癌变进程。此外,肠道致癌菌群的异常定植加剧了宿主慢性炎症与免疫失衡,显著提升了癌变风险。未来针对p53突变、微卫星不稳定性及特征菌群的早期识别、关键通路的精准靶向干预以及微生态的精准调控策略,将成为UC-CRC早期诊断与精准治疗的重要研究方向。
冯子钊 姜伟炜.
从炎症到癌变:溃疡性结肠炎向结直肠癌进展的分子机制与干预策略 [J]. 国际医药卫生导报, 2025, 31(20): 3395-3402.
Feng Zizhao, Jiang Weiwei.
From inflammation to carcinogenesis: molecular mechanisms and intervention strategies in progression from ulcerative colitis to colorectal cancer [J]. International Medicine and Health Guidance News, 2025, 31(20): 3395-3402.
| [1] Wetwittayakhlang P, Golovics PA, Gonczi L, et al. Stable incidence and risk factors of colorectal cancer in ulcerative colitis: a population-based cohort between 1977-2020[J]. Clin Gastroenterol Hepatol, 2024, 22(1):191-193.e3. DOI: 10.1016/j.cgh.2023.03.022.. [2] Kunovszki P, Milassin Á, Gimesi-Országh J, et al. Epidemiology, mortality and prevalence of colorectal cancer in ulcerative colitis patients between 2010-2016 in Hungary - a population-based study[J]. PLoS One, 2020, 15(5):e0233238. DOI: 10.1371/journal.pone.0233238. [3] Hirsch D, Hardt J, Sauer C, et al. Molecular characterization of ulcerative colitis-associated colorectal carcinomas[J]. Mod Pathol, 2021, 34(6):1153-1166. DOI: 10.1038/s41379-020-00722-5. [4] Mäki-Nevala S, Ukwattage S, Olkinuora A, et al. Somatic mutation profiles as molecular classifiers of ulcerative colitis-associated colorectal cancer[J]. Int J Cancer, 2021, 148(12):2997-3007. DOI: 10.1002/ijc.33492. [5] Tang P, Zha L, Ye C, et al. Research progress on the carcinogenesis mechanism of inflammation in ulcerative colitis: a narrative review[J]. Ann Palliat Med, 2021, 10(11): 11994-12002. DOI: 10.21037/apm-21-3138. [6] Yin Y, Wan J, Yu J, et al. Molecular pathogenesis of colitis-associated colorectal cancer: immunity, genetics, and intestinal microecology[J]. Inflamm Bowel Dis, 2023, 29(10): 1648-1657. DOI: 10.1093/ibd/izad081. [7] Mackiewicz T, Sowa A, Fichna J. Biomarkers for early detection of colitis-associated colorectal cancer - current concepts, future trends [J]. Curr Drug Targets, 2021;22(1):137-145. DOI: 10.2174/1389450121666200220123844. [8] Irrazabal T, Thakur BK, Kang M, et al. Limiting oxidative DNA damage reduces microbe-induced colitis-associated colorectal cancer[J]. Nat Commun, 2020, 11(1):1802. DOI: 10.1038/s41467-020-15549-6. [9] Walter L, Canup B, Pujada A, et al. Matrix metalloproteinase 9 (MMP9) limits reactive oxygen species (ROS) accumulation and DNA damage in colitis-associated cancer[J]. Cell Death Dis, 2020, 11(9):767. DOI: 10.1038/s41419-020-02959-z. [10] Zhang J, Mengli Y, Zhang T, et al. Deficiency in epithelium RAD50 aggravates UC via IL-6-mediated JAK1/2-STAT3 signaling and promotes development of colitis-associated cancer in mice [J]. J Crohns Colitis, 2025, 19(2): jjae134. DOI: 10.1093/ecco-jcc/jjae134. [11] Morrison H, Rowe A, Eden K, et al. Diminished noncanonical NF-κB signaling induces colitis-associated colorectal cancer susceptibility upon de-differentiation of epithelial cells[J]. J Immunol, 2022, 208(1_Supplement). DOI:10.4049/jimmunol.208.supp.178.01. [12] Pacifico T, Stolfi C, Tomassini L, et al. Rafoxanide negatively modulates STAT3 and NF-κB activity and inflammation-associated colon tumorigenesis[J]. Cancer Sci, 2024, 115(11): 3596-3611. DOI: 10.1111/cas.16317. [13] Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Targeting STAT3 signaling pathway in colorectal cancer[J]. Biomedicines, 2021, 9(8):1016. DOI: 10.3390/biomedicines9081016. [14] Luo Q, Huang S, Zhao L, et al. Chang qing formula ameliorates colitis-associated colorectal cancer via suppressing IL-17/NF-κB/STAT3 pathway in mice as revealed by network pharmacology study [J]. Front Pharmacol, 2022, 13: 893231. DOI: 10.3389/fphar.2022.893231. [15] Tang F, Cao F, Lu C, et al. Dvl2 facilitates the coordination of NF-κB and Wnt signaling to promote colitis-associated colorectal progression [J]. Cancer Sci, 2022, 113(2): 565-575. DOI: 10.1111/cas.15206. [16] Zhou Y, Xiang S, Zheng H, et al. Neferine suppresses experimental colitis-associated colorectal cancer by inhibition of NF-[formula: see text]B p65 and STAT3[J]. Am J Chin Med, 2022, 50(5): 1387-1400. DOI: 10.1142/S0192415X22500598. [17] Sharma BR, Karki R, Sundaram B, et al. The transcription factor IRF9 promotes colorectal cancer via modulating the IL-6/STAT3 signaling axis[J]. Cancers (Basel), 2022, 14(4): 919. DOI: 10.3390/cancers14040919. [18] Lai CY, Yeh KY, Liu BF, et al. MicroRNA-21 plays multiple oncometabolic roles in colitis-associated carcinoma and colorectal cancer via the PI3K/AKT, STAT3, and PDCD4/TNF-α signaling pathways in zebrafish [J]. Cancers (Basel), 2021, 13(21):5565. DOI: 10.3390/cancers13215565. [19] Yamamoto N, Urabe Y, Nakahara H, et al. Genetic analysis of biopsy tissues from colorectal tumors in patients with ulcerative colitis[J]. Cancers (Basel), 2024, 16(19): 3271. DOI: 10.3390/cancers16193271. [20] Matsumoto K, Urabe Y, Oka S, et al. Genomic landscape of early-stage colorectal neoplasia developing from the ulcerative colitis mucosa in the Japanese population[J]. Inflamm Bowel Dis, 2021, 27(5): 686-696. DOI: 10.1093/ibd/izaa268. [21] Jung S, Lee JL, Kim TW, et al. Molecular characterization of dysplasia-initiated colorectal cancer with assessing matched tumor and dysplasia samples [J]. Ann Coloproctol, 2022, 38(1): 72-81. DOI: 10.3393/ac.2021.00290.0041. [22] Matejcic M, Teer JK, Hoehn HJ, et al. Spectrum of somatic mutational features of colorectal tumors in ancestrally diverse populations[J]. medRxiv [Preprint], 2024,15: 2024.03.11.24303880. DOI: 10.1101/2024.03.11.24303880. [23] Jung G, Hernández-Illán E, Moreira L, et al. Epigenetics of colorectal cancer: biomarker and therapeutic potential[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(2):111-130. DOI: 10.1038/s41575-019-0230-y. [24] Yan L, Gu C, Gao S, et al. Epigenetic regulation and therapeutic strategies in ulcerative colitis[J]. Front Genet, 2023, 14:1302886. DOI: 10.3389/fgene.2023.1302886. [25] Castro-Muñoz LJ, Ulloa EV, Sahlgren C, et al. Modulating epigenetic modifications for cancer therapy (review) [J]. Oncol Rep, 2023, 49(3):59. DOI: 10.3892/or.2023.8496. [26] Gray JS, Wani SA, Campbell MJ. Epigenomic alterations in cancer: mechanisms and therapeutic potential[J]. Clin Sci (Lond), 2022, 136(7):473-492. DOI: 10.1042/CS20210449. [27] Oh CK, Cho YS. Pathogenesis and biomarkers of colorectal cancer by epigenetic alteration[J]. Intest Res, 2024, 22(2):131-151. DOI: 10.5217/ir.2023.00115. [28] Waldner MJ, Neurath MF. TGFβ and the tumor microenvironment in colorectal cancer[J]. Cells, 2023, 12(8):1139. DOI: 10.3390/cells12081139. [29] Dietl A, Ralser A, Taxauer K, et al. RNF43 is a gatekeeper for colitis-associated cancer[J]. BioRxiv, 2024. DOI: 10.1101/2024.01.30.577936. [30] Yang M, Li D, Jiang Z, et al. TGF-β-induced FLRT3 attenuation is essential for cancer-associated fibroblast-mediated epithelial-mesenchymal transition in colorectal cancer[J]. Mol Cancer Res, 2022, 20(8):1247-1259. DOI: 10.1158/1541-7786. [31] Zhang Y, Wang S, Lai Q, et al. Cancer-associated fibroblasts-derived exosomal miR-17-5p promotes colorectal cancer aggressive phenotype by initiating a RUNX3/MYC/TGF-β1 positive feedback loop[J]. Cancer Lett, 2020, 491:22-35. DOI: 10.1016/j.canlet.2020.07.023. [32] Jin Y, Wang C, Zhang B, et al. Blocking EGR1/TGF-β1 and CD44s/STAT3 crosstalk inhibits peritoneal metastasis of gastric cancer[J]. Int J Biol Sci, 2024, 20(4): 1314-1331. DOI: 10.7150/ijbs.90598. [33] Nakagomi E, Mikami T, Funahashi K, et al. Cancer stem cell markers CD44v9+/CD133- are associated with low apoptosis in both sporadic and ulcerative colitis-associated colorectal cancers[J]. Histol Histopathol, 2022, 37(6): 587-595. DOI: 10.14670/HH-18-445. [34] McAndrews KM, Vázquez-Arreguín K, Kwak C, et al. αSMA+ fibroblasts suppress Lgr5+ cancer stem cells and restrain colorectal cancer progression[J]. Oncogene, 2021, 40(26):4440-4452. DOI: 10.1038/s41388-021-01866-7. [35] Li W, Zhang N, Jin C, et al. MUC1-C drives stemness in progression of colitis to colorectal cancer[J]. JCI Insight, 2020, 5(12): e137112. DOI: 10.1172/jci.insight.137112. [36] Gong D, Adomako-Bonsu AG, Wang M, et al. Three specific gut bacteria in the occurrence and development of colorectal cancer: a concerted effort[J]. PeerJ, 2023, 11: e15777. DOI: 10.7717/peerj.15777. [37] Lee CG, Hwang S, Gwon SY, et al. Bacteroides fragilis toxin induces intestinal epithelial cell secretion of interleukin-8 by the E-cadherin/β-catenin/NF-κB dependent pathway[J]. Biomedicines, 2022,10(4):827. DOI: 10.3390/biomedicines10040827. [38] Allen J, Rosendahl Huber A, Pleguezuelos-Manzano C, et al. Colon tumors in enterotoxigenic bacteroides fragilis (ETBF)-colonized mice do not display a unique mutational signature but instead possess host-dependent alterations in the APC gene[J]. Microbiol Spectr, 2022, 10(3): e0105522. DOI: 10.1128/spectrum.01055-22. [39] Taher HJ, Kamel FH. Prevalence and phylogenetic analysis of fusobacterium nucleatum and virulent factor fada among ulcerative colitis precancerous and colorectal carcinoma patients in the Iraqi Kurdish population[J]. Arch Razi Inst, 2023, 78(1):445-452. DOI: 10.22092/ARI.2022.360307.2570. [40] Hussain N, Muccee F, Ashraf NM, et al. Comparative analysis of adhesion virulence protein FadA from gut-associated bacteria of colorectal cancer patients (F. nucleatum) and healthy individuals (E. cloacae) [J]. J Cancer, 2024, 15(17): 5492-5505. DOI: 10.7150/jca.98951. [41] Schöpf F, Marongiu GL, Milaj K, et al. Structural basis of fusobacterium nucleatum adhesin Fap2 interaction with receptors on cancer and immune cells[J]. Nat Commun, 2025, 16(1):8104. DOI: 10.1038/s41467-025-63451-w. [42] Hullar MAJ, Curtis KR, Harrison TA, et al. Abstract PR008: evaluation of intra-tumoral pathogenic bacteria pks+ E. coli, enterotoxigenic B. fragilis and fusobacterium nucleatum in 3695 colorectal cancer cases[J]. Cancer Research, 2022, 82(23-Sup1): 4. DOI: 10.1158/1538-7445.CRC22-PR008. [43] Öztürk Bakar Y, Demiryas S, Ceylan Kılınçarslan A, et al. The relationship of enterotoxigenic bacteroides fragilis and fusobacterium nucleatum intestinal colonization with colorectal cancer: a case-control study performed with colon biopsies[J]. Mikrobiyol Bul, 2023, 57(3):353-364. DOI: 10.5578/mb.20239929. [44] Jo M, Hwang S, Lee CG, et al. Promotion of colitis in B cell-deficient C57bl/6 mice infected with enterotoxigenic bacteroides fragilis[J]. Int J Mol Sci, 2023, 25(1):364. DOI: 10.3390/ijms25010364. [45] Xu Q, Lu X, Li J, et al. Fusobacterium nucleatum induces excess methyltransferase-like 3-mediated microRNA-4717-3p maturation to promote colorectal cancer cell proliferation[J]. Cancer Sci, 2022, 113(11):3787-3800. DOI: 10.1111/cas.15536. [46] Hullar MA, Curtis KR, Harrison T, et al. Abstract 3039: Evaluation of intra-tumoral pks+ E. coli, enterotoxigenic B. Fragilis and Fusobacterium nucleatum, overall and in early onset disease, in colorectal cancer cases[J]. Cancer research, 2023, 83(7-Sup): 5. DOI:10.1158/1538-7445.AM2023-3039. [47] Shao Y, Lan Y, Chai X, et al. CXCL8 induces M2 macrophage polarization and inhibits CD8+ T cell infiltration to generate an immunosuppressive microenvironment in colorectal cancer[J]. FASEB J, 2023, 37(10): e23173. DOI: 10.1096/fj.202201982RRR. [48] Katagata M, Okayama H, Nakajima S, et al. TIM-3 expression and M2 polarization of macrophages in the TGFβ-activated tumor microenvironment in colorectal cancer[J]. Cancers (Basel), 2023, 15(20):4943. DOI: 10.3390/cancers15204943. [49] Shimizu D, Yuge R, Kitadai Y, et al. Pexidartinib and immune checkpoint inhibitors combine to activate tumor immunity in a murine colorectal cancer model by depleting M2 macrophages differentiated by cancer-associated fibroblasts[J]. Int J Mol Sci, 2024, 25(13):7001. DOI: 10.3390/ijms25137001. [50] Zeng S, Hu H, Li Z, et al. Local TSH/TSHR signaling promotes CD8+ T cell exhaustion and immune evasion in colorectal carcinoma[J]. Cancer Commun (Lond), 2024, 44(11):1287-1310. DOI: 10.1002/cac2.12605. [51] Nygaard V, Ree AH, Dagenborg VJ, et al. A PRRX1 signature identifies TIM-3 and VISTA as potential immune checkpoint targets in a subgroup of microsatellite stable colorectal cancer liver metastases[J]. Cancer Res Commun, 2023, 3(2):235-244. DOI: 10.1158/2767-9764.CRC-22-0295. [52] Mokhtari Z, Rezaei M, Sanei MH, et al. Tim3 and PD-1 as a therapeutic and prognostic targets in colorectal cancer: relationship with sidedness, clinicopathological parameters, and survival[J]. Front Oncol, 2023, 13:1069696. DOI: 10.3389/fonc.2023.1069696. |
| [1] | 赵洲 刘为朋 李宗睿 王睿智 胡宝光. 高血压大鼠模型的研究现状 [J]. 国际医药卫生导报, 2025, 31(9): 1465-1470. |
| [2] | 昝兴淳. 通督调神针刺治疗脑卒中后吞咽障碍的研究进展与展望 [J]. 国际医药卫生导报, 2025, 31(9): 1470-1474. |
| [3] | 李强. 超声引导下射频消融治疗甲状腺微小乳头状癌的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1258-1260. |
| [4] | 洪金全 黄震宇 黄惠炆 黄豪博. 胸苷酸合成酶基因在肿瘤发生发展中的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1260-1265. |
| [5] | 蒋萌 赵静如 刘惠 刘庆新. 自噬与缺血性脑血管疾病的研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1265-1269. |
| [6] | 刘汉清 孙银萍 赵强 任帅. MSI-H/dMMR亚组局部晚期结直肠癌患者新辅助免疫治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(8): 1270-1274. |
| [7] | 朱鹏 唐文玲 覃刚. 结直肠癌中微小RNA功能及临床价值进展 [J]. 国际医药卫生导报, 2025, 31(6): 886-890. |
| [8] | 潘文昕 姜伟炜. 结肠镜检查时机对缺血性结肠炎患者预后影响的研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 914-917. |
| [9] | 张子怡 孙大康. TRIM22抗HIV-1作用机制研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 918-922. |
| [10] | 易伟 米倩倩 赵洁 李博宇 王丹. 彩色多普勒血流成像在球后血流动力学检测中的应用 [J]. 国际医药卫生导报, 2025, 31(6): 922-926. |
| [11] | 陈秀珠 张凯 韦岩笑 丛晨阳. 甲状腺相关眼病的药物治疗研究进展 [J]. 国际医药卫生导报, 2025, 31(6): 927-929. |
| [12] | 李晓童 于胜强. 肾小管细胞来源外泌体在肾纤维化中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 712-718. |
| [13] | 张涵 孙婷 王延飞 张肖林 车娟. 移植后淋巴组织增生性疾病在儿童扁桃体腺样体肥大中的研究进展 [J]. 国际医药卫生导报, 2025, 31(5): 752-757. |
| [14] | 莫家婵 范万峰 姜兴岳. 基于磁共振成像的影像组学在垂体腺瘤中的应用现状及进展 [J]. 国际医药卫生导报, 2025, 31(5): 757-760. |
| [15] | 刘伟锋 郭媛 唐文洁 杨蕊梦 樊浩 魏新华. “医+X”人才培养模式对医学影像研究生综合能力培养的初探 [J]. 国际医药卫生导报, 2025, 31(4): 530-534. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||