[1] Sterba A, Sedova P, Brown RD, et al. Predictors of spontaneous intracerebral hemorrhage mortality: a community-based study in Brno, Czech Republic[J].Acta Neurol Belg,2024,124(6):1945-1958.DOI:10.1007/s13760-024-02612-y.
[2] Amer HA, El-Jaafary SIM, Sadek HMAE, et al. Clinical and paraclinical predictors of early neurological deterioration and poor outcome in spontaneous intracerebral hemorrhage[J]. Egypt J Neurol Psychiatr Neurosurg, 2023,59(1):74. DOI: 10.1186/s41983-023-00675-x.
[3] Lin K, Gao C, Lin Z, et al. Characteristics, predictors and outcomes of early postoperative cerebral infarction on computed tomography in spontaneous intracerebral hemorrhage[J]. Sci Rep, 2024, 14(1):19526. DOI: 10.1038/s41598-024-69571-5.
[4] Harrison P, Hasan R, Park K. State-of-the-art of breast cancer diagnosis in medical images via convolutional neural networks (CNNs)[J]. J Healthc Inform Res, 2023, 7(4):387-432. DOI: 10.1007/s41666-023-00144-3.
[5] Tanioka S, Aydin OU, Hilbert A, et al. Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using a multimodal neural network[J]. Sci Rep, 2024, 14(1):16465. DOI: 10.1038/s41598-024-67365-3.
[6] Lu M, Wang Y, Tian J, et al. Application of deep learning and radiomics in the prediction of hematoma expansion in intracerebral hemorrhage: a fully automated hybrid approach[J]. Diagn Interv Radiol, 2024, 30(5):299-312. DOI: 10.4274/dir.2024.222088.
[7] 李光波,王新港,张旭伟. 自发性脑出血患者血清microRNA-130a、microRNA-210表达水平及与早期神经功能恶化的关系[J]. 中国现代医学杂志,2022,32(8):79-84. DOI:10.3969/j.issn.1005-8982.2022.08.015.
[8] 詹戈里.自发性脑出血早期神经功能恶化危险因素的病例对照研究[D].长春:吉林大学,2023.DOI:10.27162/d.cnki.gjlin.2023.003994.
[9] 中华医学会神经外科学分会,中国医师协会急诊医师分会,国家卫生和计划生育委员会脑卒中筛查与防治工程委员会. 自发性脑出血诊断治疗中国多学科专家共识[J]. 中华急诊医学杂志,2015,24(12):1319-1323. DOI:10.3760/cma.j.issn.1671-0282.2015.12.003.
[10] 张磊, 刘建民. 美国国立卫生研究院卒中量表[J]. 中华神经外科杂志, 2014, 30(1):79-79.
[11] Sterenstein A, Garg R. The impact of sex on epidemiology, management, and outcome of spontaneous intracerebral hemorrhage (sICH)[J]. J Stroke Cerebrovasc Dis, 2024,33(7):107755. DOI: 10.1016/j.jstrokecerebrovasdis.2024.107755.
[12] Deng L, Li ZQ, Yang WS, et al. Prehospital ultra-early neurological deterioration in intracerebral hemorrhage: definition, prevalence, and association with outcomes[J]. Cerebrovasc Dis, 2023, 52(4):471-479. DOI: 10.1159/000527545.
[13] 卢万俊,彭剑,袁梦轩,等. 基于平扫CT多维度影像组学对无传统影像学特征的自发性脑出血患者早期血肿扩大的预测作用[J]. 中国脑血管病杂志,2023,20(9):597-608. DOI:10.3969/j.issn.1672-5921.2023.09.003.
[14] Feng C, Ding Z, Lao Q, et al. Prediction of early hematoma expansion of spontaneous intracerebral hemorrhage based on deep learning radiomics features of noncontrast computed tomography[J]. Eur Radiol, 2024, 34(5):2908-2920. DOI: 10.1007/s00330-023-10410-y.
[15] Wang M, Liang Y, Li H, et al. Hybrid clinical-radiomics model based on fully automatic segmentation for predicting the early expansion of spontaneous intracerebral hemorrhage: a multi-center study[J]. J Stroke Cerebrovasc Dis, 2024, 33(11):107979. DOI: 10.1016/j.jstrokecerebrovasdis.2024.107979.
[16] Zhao X, Zhou B, Luo Y, et al. CT-based deep learning model for predicting hospital discharge outcome in spontaneous intracerebral hemorrhage[J]. Eur Radiol, 2024, 34(7):4417-4426. DOI: 10.1007/s00330-023-10505-6.
[17] Zhang H, Yang YF, Song XL, et al. An interpretable artificial intelligence model based on CT for prognosis of intracerebral hemorrhage: a multicenter study[J]. BMC Med Imaging, 2024, 24(1):170. DOI: 10.1186/s12880-024-01352-y.
|