国际医药卫生导报 ›› 2025, Vol. 31 ›› Issue (18): 3004-3010.DOI: 10.3760/cma.j.cn441417-20250311-18003

• 脑血管疾病 • 上一篇    下一篇

全脑CT灌注参数联合临床特征预测短暂性脑缺血发作继发脑梗死风险

王敏茹1  杨祎2  李丹东3  周欣1   

  1. 1陕西省核工业二一五医院医学影像科,咸阳 712000;2宝鸡市中心医院康复医学科,宝鸡 721000;3西安交通大学第一附属医院神经外科,西安 710000

  • 收稿日期:2025-03-11 出版日期:2025-09-15 发布日期:2025-09-25
  • 通讯作者: 周欣,Email:470981754@qq.com
  • 基金资助:

    国家自然科学基金(81501011);宝鸡市卫生健康委员会科研课题(2020-012)

Whole-brain CT perfusion parameters combined with clinical characteristics in prediction of ischemic stroke secondary to transient ischemic attack

Wang Minru1, Yang Wei2, Li Dandong3, Zhou Xin1   

  1. 1 Department of Medical Imaging, No.215 Hospital of Shaanxi Nuclear Industry, Xianyang 712000, China; 2 Department of Rehabilitation Medicine, Baoji Central Hospital, Baoji 721000, China; 3 Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China

  • Received:2025-03-11 Online:2025-09-15 Published:2025-09-25
  • Contact: Zhou Xin, Email: 470981754@qq.com
  • Supported by:

    National Natural Science Foundation (81501011); Scientific Research Project Supported by Baoji Health Commission (2020-012)

摘要:

目的 构建结合全脑CT灌注参数与临床特征的短暂性脑缺血发作(TIA)继发脑梗死风险预测模型,评估其预测性能和临床适用性。方法 采用回顾性分析,选取2019年1月至2024年1月陕西省核工业二一五医院收治的304例TIA患者,其中男172例、女132例,年龄(55.26±11.96)岁。根据梗死情况分为梗死组(51例)和未梗死组(253例)。通过飞利浦Brilliance iCT(256层)设备获取CT灌注参数[脑血流量(CBF)、局部脑血容积(CBV)、平均通过时间(MTT)、达峰时间(TTP)],并结合临床特征(ABCD2评分、高血压史、高血脂史等)进行多因素logistic回归分析,构建Nomogram预测模型。统计比较采用t检验、秩和检验、χ2检验、Spearman相关性分析,利用受试者操作特征曲线、校准曲线和决策曲线分析(DCA)评估模型的预测性能。结果 多因素logistic回归分析显示,脑缺血发作频率、ABCD2评分、CBF、CBV、MTT、高血压史、高血脂史、房颤和颈动脉狭窄均为TIA继发脑梗死的独立危险因素(均P<0.05)。Nomogram模型曲线下面积为0.962[95%置信区间(CI)0.941~0.984],C指数为0.900(95%CI 0.854~0.945),校准曲线显示预测值与实际值拟合良好,DCA显示风险阈值在(0~97)%区间内均有临床获益,净收益率最高达83.22%。结论 全脑CT灌注参数结合临床特征的Nomogram模型能够准确预测TIA继发脑梗死风险,具有较高预测性能和临床实用性,可为早期干预策略提供科学依据。

关键词:

短暂性脑缺血发作, 脑梗死, CT灌注成像, Nomogram模型, 预测

Abstract:

Objective To develop a risk prediction model combining whole-brain CT perfusion parameters and clinical characteristics for transient ischemic attack (TIA)-related ischemic stroke, and to evaluate its predictive performance and clinical applicability. Methods This retrospective study collected the data of 304 patients with TIA treated at No.215 Hospital of Shaanxi Nuclear Industry between January 2019 and January 2024. There were 172 males and 132 females. They were (55.26±11.96) years old. According to whether they had cerebral infarction, the patients were divided into an infarction group (51 cases) and a non-infarction group (253 cases). The whole-brain CT perfusion parameters [cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP)] were obtained using the Philips Brilliance iCT (256-slice) system. The multivariate logistic regression analysis was performed to construct a Nomogram prediction model based on the CT perfusion parameters and clinical characteristics (ABCD2 score, history of hypertension and hyperlipidemia, etc.). Statistical comparisons were conducted using t-test, rank sum tests, χ2 test, and Spearman correlation analysis. The predictive performance of the model was evaluated using the receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA). Results The multivariate logistic regression analysis showed that frequency of ischemic episodes, ABCD2 score, CBF, CBV, MTT, history of hypertension and hyperlipidemia, atrial fibrillation, and carotid artery stenosis were the independent risk factors (all P<0.05). The area under the curve of the Nomogram model was 0.962 (95%CI 0.941-0.984); the C-index was 0.900 (95%CI 0.854-0.945). The calibration curve demonstrated good agreement between the predicted and actual outcomes, and the DCA showed clinical benefit across a risk threshold range of (0-97)%, with a maximum net benefit of 83.22%. Conclusion The Nomogram model, combining whole-brain CT perfusion parameters and clinical characteristics, can accurately predict the risk of ischemic stroke secondary to TIA, has high predictive performance and clinical utility, and can provide scientific references for early intervention strategies.

Key words:

Transient ischemic attack, Cerebral infarction, CT perfusion imaging, Nomogram model, Prediction