[1] Sung H,
Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates
of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA
Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2] Sun X, Su S, Chen C, et al. Long-term
outcomes of intensity-modulated radiotherapy for 868 patients with
nasopharyngeal carcinoma: an analysis of survival and treatment toxicities[J].
Radiother Oncol, 2014, 110(3): 398-403. DOI: 10.1016/j.radonc.2013.10.020.
[3] 周世平,张哲. miRNA与鼻咽癌侵袭转移关系的研究进展[J]. 中国耳鼻咽喉颅底外科杂志,2013,19(6):568-572. DOI:10.11798/j.issn.1007-1520.201306028.
[4] 王婷. miRNA在鼻咽癌中的研究进展[J]. 中国肿瘤,2012,21(7):519-524.
[5] Zhuo X, Zhou W, Li D, et al. Plasma
microRNA expression signature involving miR-548q, miR-630 and miR-940 as
biomarkers for nasopharyngeal carcinoma detection[J]. Cancer Biomark, 2018,
23(4): 579-587. DOI: 10.3233/CBM-181852.
[6] Di Leva G, Garofalo M, Croce CM.
MicroRNAs in cancer[J]. Annu Rev Pathol, 2014, 9:287-314. DOI:
10.1146/annurev-pathol-012513-104715.
[7] Norouzi M, Yasamineh S, Montazeri M, et
al. Recent advances on nanomaterials-based fluorimetric approaches for
microRNAs detection[J]. Mater Sci Eng C Mater Biol Appl, 2019, 104:110007. DOI:
10.1016/j.msec. 2019.110007.
[8] Wang H, Wei X, Wu B, et al. Tumor-educated
platelet miR-34c-3p and miR-18a-5p as potential liquid biopsy biomarkers for
nasopharyngeal carcinoma diagnosis[J]. Cancer Manag Res, 2019, 11:3351-3360.
DOI: 10.2147/CMAR.S195654.
[9] 黄刚,吴剑威. 微小RNA在鼻咽癌诊断和评估预后中的价值研究进展[J]. 现代医药卫生,2020,36(15):2398-2401. DOI:10.3969/j.issn.1009-5519.2020.15.028.
[10] 李晓霞,李瑞平,杜紫明,等. 鼻咽癌差异表达miRNAs筛选研究[J]. 中山大学学报(医学科学版),2007,28(6):607-612. DOI:10.3321/j.issn:1672-3554.2007.06.002.
[11] Sengupta S, den Boon JA, Chen IH, et al.
MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating
mRNAs encoding extracellular matrix proteins[J]. Proc Natl Acad Sci U S A,
2008, 105(15): 5874-5878. DOI: 10.1073/pnas.0801130105.
[12] Hui AB, Bruce JP, Alajez NM, et al.
Significance of dysregulated metadherin and microRNA-375 in head and neck
cancer[J]. Clin Cancer Res, 2011, 17(24):7539-7550. DOI:
10.1158/1078-0432.CCR-11-2102.
[13] 肖烈钢,黄季萌,何本夫,等. miR-4295靶向结合PTEN促进EMT和鼻咽癌细胞的侵袭[J]. 国际医药卫生导报,2018,24(19):2934-2940. DOI:10.3760/cma.j.issn.1007-1245.
2018.19.015.
[14] Shi Q, Dai J, Huang L. microRNA-29a
functions as a tumor suppressor in nasopharyngeal carcinoma 5-8F cells through
targeting VEGF[J]. Iran J Basic Med Sci, 2019, 22(5): 541-546. DOI:
10.22038/ijbms.2019.33818.8049.
[15] Gao R, Feng Q, Tan G. microRNA-613 exerts
anti-angiogenic effect on nasopharyngeal carcinoma cells through inactivating
the AKT signaling pathway by down-regulating FN1[J]. Biosci Rep, 2019,
39(7):BSR20182196. DOI: 10.1042/BSR20182196.
[16] Cui F, Ji Y, Wang M, et al. miR-143
inhibits proliferation and metastasis of nasopharyngeal carcinoma cells via
targeting FMNL1 based on clinical and radiologic findings[J]. J Cell Biochem,
2019, 120(10):16427-16434. DOI: 10.1002/jcb.28709.
[17] Liang TS, Zheng YJ, Wang J, et al.
MicroRNA-506 inhibits tumor growth and metastasis in nasopharyngeal carcinoma
through the inactivation of the Wnt/β-catenin signaling pathway by
down-regulating LHX2[J]. J Exp Clin Cancer Res, 2019, 38(1):97. DOI:
10.1186/s13046-019- 1023-4.
[18] Sun X, Liu X, Wang Y, et al. miR-100
inhibits the migration and invasion of nasopharyngeal carcinoma by targeting
IGF1R[J]. Oncol Lett, 2018, 15(6):8333-8338. DOI: 10.3892/ol.2018.8420.
[19] Calin GA, Ferracin M, Cimmino A, et al. A
microRNA signature associated with prognosis and progression in chronic
lymphocytic leukemia[J]. N Engl J Med, 2005, 353(17): 1793-1801. DOI:
10.1056/NEJMoa050995.
[20] Zheng Z, Qu JQ, Yi HM, et al. MiR-125b
regulates proliferation and apoptosis of nasopharyngeal carcinoma by targeting
A20/NF-κB signaling pathway[J]. Cell Death Dis, 2017, 8(6): e2855. DOI:
10.1038/cddis.2017.211.
[21] 王蔓菁,刘丽娟,周芳,等. 鼻咽癌与miRNAs[J]. 现代生物医学进展,2011,11(13):2565-2567.
[22] Ye SB, Zhang H, Cai TT, et al. Exosomal
miR-24-3p impedes T-cell function by targeting FGF11 and serves as a potential
prognostic biomarker for nasopharyngeal carcinoma[J]. J Pathol, 2016, 240(3):
329-340. DOI: 10.1002/path.4781.
[23] Wang F, Lu J, Peng X, et al. Integrated
analysis of microRNA regulatory network in nasopharyngeal carcinoma with deep
sequencing[J]. J Exp Clin Cancer Res, 2016, 35:17. DOI:
10.1186/s13046-016-0292-4.
[24] 倪雅楠,季明芳. EBV miR-BARTs在鼻咽癌中的研究及应用进展[J]. 肿瘤学杂志,2020,26(4):269-274. DOI:10.11735/j.issn.1671-170X.2020.04.B001.
[25] 李璐,王建红,黄辉,等. 鼻咽癌血清miRNA表达谱分析[J]. 华夏医学,2014,27(6):1-4.
[26] Tian Y, Tang L, Yi P, et al. MiRNAs in
radiotherapy resistance of nasopharyngeal carcinoma[J]. J Cancer, 2020, 11(13):
3976-3985. DOI: 10.7150/jca.42734.
[27] Wan FZ, Chen KH, Sun YC, et al. Exosomes
overexpressing miR-34c inhibit malignant behavior and reverse the
radioresistance of nasopharyngeal carcinoma[J]. J Transl Med, 2020,18(1): 12.
DOI: 10.1186/s12967-019-02203-z.
[28] Huang T, Yin L, Wu J, et al.
MicroRNA-19b-3p regulates nasopharyngeal carcinoma radiosensitivity by
targeting TNFAIP3/NF-κB axis[J]. J Exp Clin Cancer Res, 2016, 35(1): 188. DOI:
10.1186/s13046-016-0465-1.
[29] Zhang T, Sun Q, Liu T, et al. MiR-451
increases radiosensitivity of nasopharyngeal carcinoma cells by targeting
ras-related protein 14 (RAB14) [J]. Tumour Biol, 2014, 35(12):12593-12599. DOI:
10.1007/s13277-014- 2581-x.
|