International Medicine and Health Guidance News ›› 2023, Vol. 29 ›› Issue (20): 2852-2856.DOI: 10.3760/cma.j.issn.1007-1245.2023.20.007
• Gastric Cancer • Previous Articles Next Articles
Research progress of NKG2D and its ligands in treatment of gastric cancer
Li Zongrui, Liu Weipeng, Hu Baoguang
Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou 256600, China
Received:
2023-06-09
Online:
2023-10-15
Published:
2023-11-06
Contact:
Hu Baoguang, Email: hbglmn@163.com
Supported by:
Shandong Natural Science Foundation (ZR2017LHO50)
NKG2D及其配体治疗胃癌的研究进展
李宗睿 刘为朋 胡宝光
滨州医学院附属医院胃肠外科,滨州 256600
通讯作者:
胡宝光,Email:hbglmn@163.com
基金资助:
山东省自然科学基金(ZR2017LHO50)
Li Zongrui, Liu Weipeng, Hu Baoguang.
Research progress of NKG2D and its ligands in treatment of gastric cancer [J]. International Medicine and Health Guidance News, 2023, 29(20): 2852-2856.
李宗睿 刘为朋 胡宝光.
NKG2D及其配体治疗胃癌的研究进展 [J]. 国际医药卫生导报, 2023, 29(20): 2852-2856.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.imhgn.com/EN/10.3760/cma.j.issn.1007-1245.2023.20.007
[1] Lanier LL. NKG2D receptor and its ligands in host defense [J]. Cancer Immunol Res, 2015, 3(6): 575-582. DOI: 10.1158/2326-6066.CIR-15-0098. [2] Cerboni C, Mousavi-Jazi M, Linde A, et al. Human cytomegalovirus strain-dependent changes in NK cell recognition of infected fibroblasts [J]. J Immunol, 2000, 164(9): 4775-4782. DOI: 10.4049/jimmunol.164.9.4775. [3] Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA [J]. Science, 1999, 285(5428): 727-729. DOI: 10.1126/science.285.5428.727. [4] Garrity D, Call ME, Feng J, et al. The activating NKG2D receptor assembles in the membrane with two signaling dimers into a hexameric structure [J]. Proc Natl Acad Sci U S A, 2005, 102(21): 7641-7646. DOI: 10.1073/pnas.0502439102. [5] Diefenbach A, Tomasello E, Lucas M, et al. Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D [J]. Nat Immunol, 2002, 3(12): 1142-1149. DOI: 10.1038/ni858. [6] McFarland BJ, Kortemme T, Yu SF, et al. Symmetry recognizing asymmetry: analysis of the interactions between the C-type lectin-like immunoreceptor NKG2D and MHC class I-like ligands [J]. Structure, 2003, 11(4): 411-422. DOI: 10.1016/s0969-2126(03)00047-9. [7] Di Santo JP. Natural killer cell developmental pathways: a question of balance [J]. Annu Rev Immunol, 2006, 24: 257-286. DOI: 10.1146/annurev.immunol.24. 021605.090700. [8] Raulet DH, Gasser S, Gowen BG, et al. Regulation of ligands for the NKG2D activating receptor [J]. Annu Rev Immunol, 2013, 31: 413-441. DOI: 10.1146/annurev-immunol-032712-095951. [9] Raulet DH. Roles of the NKG2D immunoreceptor and its ligands [J]. Nat Rev Immunol, 2003, 3(10): 781-790. DOI: 10.1038/nri1199. [10] Champsaur M, Lanier LL. Effect of NKG2D ligand expression on host immune responses [J]. Immunol Rev, 2010, 235(1): 267-285. DOI: 10.1111/j.0105-2896.2010.00893.x. [11] Le Bert N, Gasser S. Advances in NKG2D ligand recognition and responses by NK cells [J]. Immunol Cell Biol, 2014, 92(3): 230-236. DOI: 10.1038/icb.2013.111. [12] Eagle RA, Trowsdale J. Promiscuity and the single receptor: NKG2D [J]. Nat Rev Immunol, 2007, 7(9): 737-744. DOI: 10.1038/nri2144. [13] Curio S, Lin W, Bromley C, et al. NKG2D fine-tunes the local inflammatory response in colorectal cancer [J]. Cancers (Basel), 2023, 15(6): 1792. DOI: 10.3390/cancers15061792. [14] Dutta S, Ganguly A, Chatterjee K, et al. Targets of immune escape mechanisms in cancer: basis for development and evolution of cancer immune checkpoint inhibitors [J]. Biology (Basel), 2023, 12(2): 218. DOI: 10.3390/biology12020218. [15] Baragaño Raneros A, Suarez-Álvarez B, López-Larrea C. Secretory pathways generating immunosuppressive NKG2D ligands: new targets for therapeutic intervention [J]. Oncoimmunology, 2014, 3: e28497. DOI: 10.4161/onci.28497. [16] Eagle RA, Jafferji I, Barrow AD. Beyond stressed self: evidence for NKG2D ligand expression on healthy cells [J]. Curr Immunol Rev, 2009, 5(1): 22-34. DOI: 10.2174/157339509787314369. [17] Yu L, Sun L, Liu X, et al. The imbalance between NKG2A and NKG2D expression is involved in NK cell immunosuppression and tumor progression of patients with hepatitis B virus-related hepatocellular carcinoma [J]. Hepatol Res, 2023, 53(5): 417-431. DOI: 10.1111/hepr.13877. [18] Wensveen FM, Jelenčić V, Polić B. NKG2D: a master regulator of immune cell responsiveness [J]. Front Immunol, 2018, 9: 441. DOI: 10.3389/fimmu.2018.00441. [19] Groh V, Wu J, Yee C, et al. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation [J]. Nature, 2002, 419(6908): 734-738. DOI: 10.1038/nature01112. [20] Curio S, Jonsson G, Marinović S. A summary of current NKG2D-based CAR clinical trials [J]. Immunother Adv, 2021, 1(1): ltab018. DOI: 10.1093/immadv/ltab018. [21] Molfetta R, Quatrini L, Capuano C, et al. c-Cbl regulates MICA- but not ULBP2-induced NKG2D down-modulation in human NK cells [J]. Eur J Immunol, 2014, 44(9): 2761-2770. DOI: 10.1002/eji.201444512. [22] Quatrini L, Molfetta R, Zitti B, et al. Ubiquitin-dependent endocytosis of NKG2D-DAP10 receptor complexes activates signaling and functions in human NK cells [J]. Sci Signal, 2015, 8(400): ra108. DOI: 10.1126/scisignal.aab2724. [23] Roda-Navarro P, Reyburn HT. The traffic of the NKG2D/Dap10 receptor complex during natural killer (NK) cell activation [J]. J Biol Chem, 2009, 284(24): 16463-16472. DOI: 10.1074/jbc.M808561200. [24] Doubrovina ES, Doubrovin MM, Vider E, et al. Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma [J]. J Immunol, 2003, 171(12): 6891-6899. DOI: 10.4049/jimmunol.171.12.6891. [25] Chitadze G, Bhat J, Lettau M, et al. Generation of soluble NKG2D ligands: proteolytic cleavage, exosome secretion and functional implications [J]. Scand J Immunol, 2013, 78(2): 120-129. DOI: 10.1111/sji.12072. [26] Chitadze G, Lettau M, Bhat J, et al. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: heterogeneous involvement of the "a disintegrin and metalloproteases" 10 and 17 [J]. Int J Cancer, 2013, 133(7): 1557-1566. DOI: 10.1002/ijc.28174. [27] Zingoni A, Cecere F, Vulpis E, et al. Genotoxic stress induces senescence-associated ADAM10-dependent release of NKG2D MIC ligands in multiple myeloma cells [J]. J Immunol, 2015, 195(2): 736-748. DOI: 10.4049/jimmunol.1402643. [28] Ashiru O, Boutet P, Fernández-Messina L, et al. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes [J]. Cancer Res, 2010, 70(2): 481-489. DOI: 10.1158/0008-5472.CAN-09-1688. [29] Kumar V, Yi Lo PH, Sawai H, et al. Soluble MICA and a MICA variation as possible prognostic biomarkers for HBV-induced hepatocellular carcinoma [J]. PLoS One, 2012, 7(9):e44743. DOI: 10.1371/journal.pone.0044743. [30] Tamaki S, Kawakami M, Ishitani A, et al. Soluble MICB serum levels correlate with disease stage and survival rate in patients with oral squamous cell carcinoma [J]. Anticancer Res, 2010, 30(10): 4097-4101. [31] Zhao YK, Jia CM, Yuan GJ, et al. Expression and clinical value of the soluble major histocompatibility complex class I-related chain A molecule in the serum of patients with renal tumors [J]. Genet Mol Res, 2015, 14(2): 7233-7240. DOI: 10.4238/2015.June.29.16. [32] Holdenrieder S, Stieber P, Peterfi A, et al. Soluble MICA in malignant diseases [J]. Int J Cancer, 2006, 118(3): 684-687. DOI: 10.1002/ijc.21382. [33] Maccalli C, Giannarelli D, Chiarucci C, et al. Soluble NKG2D ligands are biomarkers associated with the clinical outcome to immune checkpoint blockade therapy of metastatic melanoma patients [J]. Oncoimmunology, 2017, 6(7): e1323618. DOI: 10.1080/2162402X. 2017.1323618. [34] Barber A, Zhang T, Megli CJ, et al. Chimeric NKG2D receptor-expressing T cells as an immunotherapy for multiple myeloma [J]. Exp Hematol, 2008, 36(10): 1318-1328. DOI: 10.1016/j.exphem.2008.04.010. [35] Barber A, Zhang T, DeMars LR, et al. Chimeric NKG2D receptor-bearing T cells as immunotherapy for ovarian cancer [J]. Cancer Res, 2007, 67(10): 5003-5008. DOI: 10.1158/0008-5472.CAN-06-4047. [36] Fernández L, Metais JY, Escudero A, et al. Memory T cells expressing an NKG2D-CAR efficiently target osteosarcoma cells [J]. Clin Cancer Res, 2017, 23(19): 5824-5835. DOI: 10.1158/1078-0432.CCR-17-0075. [37] Chang YH, Connolly J, Shimasaki N, et al. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells [J]. Cancer Res, 2013, 73(6): 1777-1786. DOI: 10.1158/0008-5472.CAN-12-3558. [38] Basher F, Jeng EK, Wong H, et al. Cooperative therapeutic anti-tumor effect of IL-15 agonist ALT-803 and co-targeting soluble NKG2D ligand sMIC [J]. Oncotarget, 2016, 7(1): 814-830. DOI: 10.18632/oncotarget.6416. [39] Han Y, Xie W, Song DG, et al. Control of triple-negative breast cancer using ex vivo self-enriched, costimulated NKG2D CAR T cells [J]. J Hematol Oncol, 2018, 11(1): 92. DOI: 10.1186/s13045-018-0635-z. [40] Fernández-Sánchez A, Baragaño Raneros A, Carvajal Palao R, et al. DNA demethylation and histone H3K9 acetylation determine the active transcription of the NKG2D gene in human CD8+ T and NK cells [J]. Epigenetics, 2013, 8(1): 66-78. DOI: 10.4161/epi.23115. [41] Raneros AB, Minguela A, Rodriguez RM, et al. Increasing TIMP3 expression by hypomethylating agents diminishes soluble MICA, MICB and ULBP2 shedding in acute myeloid leukemia, facilitating NK cell-mediated immune recognition [J]. Oncotarget, 2017, 8(19):31959-31976. DOI: 10.18632/oncotarget.16657. [42] Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer [J]. CA Cancer J Clin, 2021, 71(3): 264-279. DOI: 10.3322/caac.21657. [43] Seeneevassen L, Bessède E, Mégraud F, et al. Gastric cancer: advances in carcinogenesis research and new therapeutic strategies [J]. Int J Mol Sci, 2021, 22(7): 3418. DOI: 10.3390/ijms22073418. [44] Wang FH, Zhang XT, Li YF, et al. The Chinese Society of Clinical Oncology (CSCO): clinical guidelines for the diagnosis and treatment of gastric cancer, 2021 [J]. Cancer Commun (Lond), 2021, 41(8): 747-795. DOI: 10.1002/cac2.12193. [45] Li K, Zhang A, Li X, et al. Advances in clinical immunotherapy for gastric cancer [J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188615. DOI: 10.1016/j.bbcan.2021.188615. [46] Janjigian YY, Maron SB, Chatila WK, et al. First-line pembrolizumab and trastuzumab in HER2-positive oesophageal, gastric, or gastro-oesophageal junction cancer: an open-label, single-arm, phase 2 trial [J]. Lancet Oncol, 2020, 21(6): 821-831. DOI: 10.1016/S1470-2045(20)30169-8. [47] Jemal A, Bray F, Center MM, et al. Global cancer statistics [J]. CA Cancer J Clin, 2011, 61(2): 69-90. DOI: 10.3322/caac.20107. [48] Mimura K, Kamiya T, Shiraishi K, et al. Therapeutic potential of highly cytotoxic natural killer cells for gastric cancer [J]. Int J Cancer, 2014, 135(6): 1390-1398. DOI: 10.1002/ijc.28780. [49] Liu X, Sun M, Yu S, et al. Potential therapeutic strategy for gastric cancer peritoneal metastasis by NKG2D ligands-specific T cells [J]. Onco Targets Ther, 2015, 8: 3095-3104. DOI: 10.2147/OTT.S91122. [50] Lin F, Dai C, Ge X, et al. Prognostic significance and functional implication of immune activating receptor NKG2D in gastric cancer [J]. Biochem Biophys Res Commun, 2017, 487(3): 619-624. DOI: 10.1016/j.bbrc.2017.04.104. [51] Zhou Z, Li J, Hong J, et al. Interleukin-15 and chemokine ligand 19 enhance cytotoxic effects of chimeric antigen receptor T cells using zebrafish xenograft model of gastric cancer [J]. Front Immunol, 2022, 13: 1002361. DOI: 10.3389/fimmu.2022.1002361. [52] Tao K, He M, Tao F, et al. Development of NKG2D-based chimeric antigen receptor-T cells for gastric cancer treatment [J]. Cancer Chemother Pharmacol, 2018, 82(5): 815-827. DOI: 10.1007/s00280-018-3670-0. [53] Li M, Zhi L, Yin M, et al. A novel bispecific chimeric PD1-DAP10/NKG2D receptor augments NK92-cell therapy efficacy for human gastric cancer SGC-7901 cell [J]. Biochem Biophys Res Commun, 2020, 523(3):745-752. DOI: 10.1016/j.bbrc.2020.01.005. [54] Han B, Mao FY, Zhao YL, et al. Altered NKp30, NKp46, NKG2D, and DNAM-1 expression on circulating nk cells is associated with tumor progression in human gastric cancer [J]. J Immunol Res, 2018: 6248590. DOI: 10.1155/2018/6248590. [55] Béziat V, Liu LL, Malmberg JA, et al. NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs [J]. Blood, 2013, 121(14): 2678-2688. DOI: 10.1182/blood-2012-10-459545. [56] Zhang T, Scott JM, Hwang I, et al. Cutting edge: antibody-dependent memory-like NK cells distinguished by FcRγ deficiency [J]. J Immunol, 2013, 190(4): 1402-1406. DOI: 10.4049/jimmunol.1203034. [57] Tran HC, Wan Z, Sheard MA, et al. TGFβR1 blockade with galunisertib (LY2157299) enhances anti-neuroblastoma activity of the anti-GD2 antibody dinutuximab (ch14.18) with natural killer cells [J]. Clin Cancer Res, 2017, 23(3): 804-813. DOI: 10.1158/1078-0432.CCR-16-1743. [58] Chen Y, Chen B, Yang T, et al. Human fused NKG2D-IL-15 protein controls xenografted human gastric cancer through the recruitment and activation of NK cells [J]. Cell Mol Immunol, 2017, 14(3): 293-307. DOI: 10.1038/cmi.2015.81. |
[1] |
Wang Zechuan, Huang Yueqin.
Advances in targeted drug therapy for acute myeloid leukemia [J]. International Medicine and Health Guidance News, 2023, 29(8): 1045-1048. |
[2] |
Xu Shijie, Luo Zebin, Chen Xiaodong.
Application and progress of CT pulmonary angiography in diagnosis and treatment of pulmonary embolism [J]. International Medicine and Health Guidance News, 2023, 29(8): 1053-1056. |
[3] |
Zhang Heng, Pan Guangtao, Yin Ming, Zhang Ping, Yin Xia.
Progress in autologous fat transplantation in plastic surgery [J]. International Medicine and Health Guidance News, 2023, 29(7): 889-892. |
[4] |
Wu Xuemei, Zhang Yujie, Xie Shenghua.
Psoriasis and its cardiovascular system comorbidities [J]. International Medicine and Health Guidance News, 2023, 29(4): 453-456. |
[5] |
Wang Wen, Zhao Xianli, Wu Xubo.
Research progress of high intensity interval training on chronic heart failure [J]. International Medicine and Health Guidance News, 2023, 29(21): 2985-2989. |
[6] |
Chen Jixiang, Lu Jing.
Research progress in optimized adjustment of driving pressure in lung protective ventilation strategies [J]. International Medicine and Health Guidance News, 2023, 29(21): 2990-2994. |
[7] |
Liu Qichang, Yang Qingyu, Zeng Yuping, Gao Dianming, Huang Wenli.
Massage as the main treatment for cervical vertigo [J]. International Medicine and Health Guidance News, 2023, 29(21): 2994-2997. |
[8] |
Shang Xue, Zhao Jiahao, Li Xinxi, Zhu Hui, Zhao Ke, Liu Zhenxing, Xu Huipu.
Research progress of GSDMD-mediated pyrodeath in atrial fibrillation [J]. International Medicine and Health Guidance News, 2023, 29(20): 2825-2828. |
[9] |
Wang Yaoyao, Ma Xiufang.
Research progress on immune-mediated inner ear disease [J]. International Medicine and Health Guidance News, 2023, 29(20): 2833-2836. |
[10] |
Wang Lu, Xie Henan, Zhao Qimei, Xie Zheng.
Research progress of assessment tools for adults' oral health literacy assessment [J]. International Medicine and Health Guidance News, 2023, 29(20): 2836-2841. |
[11] |
Chu Linlin, Wang Na, Hao Jiahui, Sun Xiao, Liu Chengxia.
Research progress of polyamines and Helicobacter pylori-induced gastric cancer [J]. International Medicine and Health Guidance News, 2023, 29(20): 2848-2851. |
[12] |
Yang Lina, Wang Yu, Xia Bo.
Research progress on clinical application of Lao Moxibustion [J]. International Medicine and Health Guidance News, 2023, 29(2): 154-. |
[13] |
Qin Mei, Yuan Xiaoli, Mi Tingtong, Wang Zhenbo.
Research progress on the role of β -adrenergic receptor in tumor immunomodulation [J]. International Medicine and Health Guidance News, 2023, 29(19): 2720-2723. |
[14] |
Ma Xiaoying, Yang Juan, Zheng Sheng.
Research progress in chronic liver disease and iron metabolism [J]. International Medicine and Health Guidance News, 2023, 29(19): 2724-2727. |
[15] |
Yang Xueyuan, Hao Dong.
Sepsis and neutrophil function [J]. International Medicine and Health Guidance News, 2023, 29(19): 2728-2732. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||