International Medicine and Health Guidance News ›› 2023, Vol. 29 ›› Issue (13): 1782-1786.DOI: 10.3760/cma.j.issn.1007-1245.2023.13.002
• New Medical Advances • Previous Articles Next Articles
Roles of epigenetics and miRNA in depression
Chen Guanhong, Yu Mingzi, Fang Yuhan, Cheng Xuefeng, Li Qi, Li Chen
First Clinical Medical School, Binzhou Medical University, Binzhou 256699, China
Received:
2023-02-08
Online:
2023-07-01
Published:
2023-07-21
Contact:
Li Qi, Email: lc_0625@163.com
Supported by:
Youth Fund of National Natural Science Foundation of China (81601189)
表观遗传与miRNA在抑郁症中的作用
陈冠宏 于茗子 方雨涵 程雪峰 李奇 李晨
滨州医学院第一临床医学院,滨州 256699
通讯作者:
李晨,Email:lc_0625@163.com
基金资助:
国家自然科学基金青年基金项目(81601189)
Chen Guanhong, Yu Mingzi, Fang Yuhan, Cheng Xuefeng, Li Qi, Li Chen.
Roles of epigenetics and miRNA in depression [J]. International Medicine and Health Guidance News, 2023, 29(13): 1782-1786.
陈冠宏 于茗子 方雨涵 程雪峰 李奇 李晨.
表观遗传与miRNA在抑郁症中的作用 [J]. 国际医药卫生导报, 2023, 29(13): 1782-1786.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.imhgn.com/EN/10.3760/cma.j.issn.1007-1245.2023.13.002
[1] Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030 [J]. PLoS Medicine, 2006, 3(11): e442. DOI: 10.1371/journal.pmed.0030442. [2] Friedrich MJ. Depression is the leading cause of disability around the world[J]. JAMA, 2017, 317(15): 1517. DOI: 10.1001/jama.2017.3826. [3] Ladd-Acosta C, Fallin MD. The role of epigenetics in genetic and environmental epidemiology[J]. Epigenomics, 2016, 8(2): 271-283. DOI:10.2217/epi.15.102. [4] Chistiakov DA, Bobryshev YV, Chekhonin VP. Epigenetic alterations in DNA and histone modifications caused by depression and antidepressant drugs: lessons from the rodent models[J]. Curr Pharm Des, 2017, 23(44): 6828-6840. DOI: 10.2174/1381612823666171031110734. [5] Kawatake-Kuno A, Murai T, Uchida S. The molecular basis of depression: implications of sex-related differences in epigenetic regulation[J]. Front Mol Neurosci, 2021, 14: 708004. DOI: 10.3389/fnmol.2021.708004. [6] 姚开云,丁虹琬,曹琳玉,等. 组蛋白去乙酰化酶抑制剂的抗抑郁前景[J]. 药学学报,2021,56(1): 29-36. DOI: 10.16438/j.0513-4870.2020-1217. [7] 李海燕,伏箫燕,崔婷,等. 组蛋白乙酰化调控异常与大鼠抑郁行为的关系研究[J]. 中国药理学通报,2017,33(1): 52-57,58. DOI: 10.3969/j.issn.1001-1978.2017.01.010. [8] 张欢,郭改艳,黄娜,等. 染色域Y样蛋白介导的组蛋白巴豆酰化与抑郁小鼠模型中NGF和炎症因子水平及神经功能紊乱的关系[J]. 现代生物医学进展,2022,22(13): 2422-2426. DOI: 10.13241/j.cnki.pmb.2022.13.004. [9] Alural B, Genc S, Haggarty SJ. Diagnostic and therapeutic potential of microRNAs in neuropsychiatric disorders: past, present, and future[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2016, 73: 87-103. DOI: 10.1016/j.pnpbp.2016.03.010. [10] 李金艳. 舍曲林对产后抑郁患者的效果及外周血相关miRNA表达与神经递质水平的影响[J]. 国际精神病学杂志,2021,48(5): 836-839. [11] 孔令明,姚高峰,何明骏,等. 抗抑郁药对自杀意念的影响及其与miRNA表达水平的关系[J]. 解放军预防医学杂志,2019,37(7): 9-11,15. [12] 徐小红,余正和,李静,等. miRNA132在抑郁症患者及慢性不可预知温和应激抑郁模型大鼠中的表达[J]. 中国医学科学院学报,2020,42(5): 573-577. DOI: 10.3881/j.issn.1000-503X.12958. [13] Yuan H, Mischoulon D, Fava M, et al. Circulating microRNAs as biomarkers for depression: many candidates, few finalists[J]. J Affect Disord, 2018, 233: 68-78. DOI: 10.1016/j.jad.2017.06.058. [14] Kocerha J, Dwivedi Y, Brennand KJ. Noncoding RNAs and neurobehavioral mechanisms in psychiatric disease[J]. Mol Psychiatry, 2015, 20(6): 677-684. DOI: 10.1038/mp.2015.30. [15] Shi Y, Wang Q, Song R, et al. Non-coding RNAs in depression: promising diagnostic and therapeutic biomarkers[J]. EBioMedicine, 2021, 71: 103569. DOI: 10.1016/j.ebiom.2021.103569. [16] Fries GR, Zhang W, Benevenuto D, et al. MicroRNAs in Major Depressive Disorder[J]. Adv Exp Med Biol, 2019, 1118: 175-190. DOI: 10.1007/978-3-030-05542-4_9. [17] Czarny P, Białek K, Ziółkowska S, et al. The Importance of Epigenetics in Diagnostics and Treatment of Major Depressive Disorder[J]. J Pers Med, 2021, 11(3): 167. DOI: 10.3390/jpm11030167. [18] Wei ZX, Xie GJ, Mao X, et al. Exosomes from patients with major depression cause depressive-like behaviors in mice with involvement of miR-139-5p-regulated neurogenesis[J]. Neuropsychopharmacology, 2020, 45(6): 1050-1058. DOI: 10.1038/s41386-020-0622-2. [19] Fiori LM, Kos A, Lin R, et al. miR-323a regulates ERBB4 and is involved in depression[J]. Mol Psychiatry, 2021, 26(8): 4191-4204. DOI: 10.1038/s41380-020-00953-7. [20] Czarny P, Białek K, Ziółkowska S, et al. The Importance of Epigenetics in Diagnostics and Treatment of Major Depressive Disorder[J]. J Pers Med, 2021, 11(3): 167. DOI: 10.3390/jpm11030167. [21] 张巧丽,过伟,张理义,等. 抑郁症患者药物治疗前后单核细胞中microRNA表达水平变化与抑郁症状的关系[J]. 解放军医学杂志,2015,40(2): 128-132. DOI: 10.11855/j.issn.0577-7402.2015.02.08. [22] Mora C, Zonca V, Riva MA, et al. Blood biomarkers and treatment response in major depression[J]. Expert Rev Mol Diagn, 2018, 18(6): 513-529. DOI: 10.1080/14737159.2018.1470927. [23] 邵秋静,冀紫阳,董娇,等. 外周血中微RNA-16和微RNA-124表达水平对抑郁症患者治疗效果的影响[J]. 新乡医学院学报,2022,39(4): 318-322,329. DOI: 10.7683/xxyxyxb.2022.04.004. [24] Cherian K, Schatzberg AF, Keller J. HPA axis in psychotic major depression and schizophrenia spectrum disorders: Cortisol, clinical symptomatology, and cognition[J]. Schizophrenia Research, 2019, 213: 72-79. DOI: 10.1016/j.schres.2019.07.003. [25] Shen J, Li Y, Qu C, et al. The enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampus[J]. J Affect Disord, 2019, 248: 81-90. DOI: 10.1016/j.jad.2019.01.031. [26] Li C, Wang F, Miao P, et al. miR-138 Increases Depressive-Like Behaviors by Targeting SIRT1 in Hippocampus[J]. Neuropsychiatr Dis Treat, 2020, 16: 949-957. DOI: 10.2147/NDT.S237558. [27] Tao Y, Gao K, Shen B, et al. MicroRNA-135b-5p downregulation causes antidepressant effects by regulating SIRT1 expression[J]. Biochem Genet, 2021, 59(6): 1582-1598. DOI: 10.1007/s10528-021-10076-5. [28] 程艳伟. CircPTK2靶向结合miR-182-5p调控BDNF表达改善抑郁样行为的作用及机制研究[D]. 吉林大学, 2022. DOI: 10.27162/d.cnki.gjlin.2022.007064. [29] Su M, Hong J, Zhao Y, et al. MeCP2 controls hippocampal brain-derived neurotrophic factor expression via homeostatic interactions with microRNA-132 in rats with depression[J]. Mol Med Rep, 2015, 12(4): 5399-5406. DOI: 10.3892/mmr.2015.4104. [30] Dwivedi Y. microRNA-124: A putative therapeutic target and biomarker for major depression[J]. Expert Opin Ther Targets, 2017, 21(7): 653-656. DOI: 10.1080/14728222. 2017.1328501. [31] 田涛,段芙蓉,戴立磊,等. 抑郁症患者BDNF、IL-6及miR-124的表达与疾病严重程度关系研究[J]. 精神医学杂志,2022,35(6):454-457. DOI: 10.3969/j.issn.2095-9346. 2022.06.013. [32] Roy B, Dunbar M, Shelton RC, et al. Identification of microRNA-124-3p as a putative epigenetic signature of major depressive disorder[J]. Neuropsychopharmacology, 2017, 42(4): 864-875. DOI: 10.1038/npp.2016.175. [33] Tang C, Hu J. HDAC1-Mediated microRNA-124-5p regulates NPY to affect learning and memory abilities in rats with depression[J]. Nanoscale Res Lett, 2021, 16(1): 28. DOI: 10.1186/s11671-021-03477-3. [34] Periyasamy P, Thangaraj A, Guo ML, et al. Epigenetic promoter DNA methylation of miR-124 promotes HIV-1 tat-mediated microglial activation via MECP2-STAT3 axis[J]. J Neurosci, 2018, 38(23): 5367-5383. DOI: 10.1523/JNEUROSCI.3474-17.2018. [35] 曾端. miR-124及其靶基因在抑郁症及抗抑郁疗效中的作用[D]. 上海交通大学, 2020. DOI: 10.27307/d.cnki.gsjtu.2020.000636. [36] Ding L, Styblo M, Drobna Z, et al. Expression of the Longest RGS4 splice variant in the prefrontal cortex is associated with single nucleotide polymorphisms in schizophrenia patients[J]. Front Psychiatry, 2016, 7: 26. DOI: 10.3389/fpsyt.2016.00026. [37] Jung S, Son H, Lee DH, et al. Decreased levels of RGS4 in the paraventricular nucleus facilitate GABAergic inhibition during the acute stress response[J]. Biochem Biophys Res Commun, 2016, 472(1): 276-280. DOI: 10.1016/j.bbrc.2016.02.108. [38] Peña CJ, Nestler EJ. Progress in epigenetics of depression[J]. Prog Mol Biol Transl Sci, 2018, 157: 41-66. DOI: 10.1016/bs.pmbts.2017.12.011. [39] Fan B, Luk AOY, Chan JCN, et al. MicroRNA and diabetic complications- a clinical perspective[J]. Antioxid Redox Signal, 2018, 29(11): 1041-1063. DOI: 10.1089/ars.2017.7318. |
[1] |
Chen Yiheng, Gao Qinbin, Liu Guanjun, Guo Weitao.
Research progress of miRNA in neurofibromatosis [J]. International Medicine and Health Guidance News, 2023, 29(3): 301-305. |
[2] |
Yue Xianghai, Yang Jing, Ren Chengli, Jiang Dongxiao, Bi Yuhua, Zhan Xia.
One patient with reversible splenial lesion syndrome after novel coronavirus infection and literature review [J]. International Medicine and Health Guidance News, 2023, 29(14): 2016-2017. |
[3] |
Zhu Peng, Peng Mingzhu, Wu Lili.
Clinical research progress of miRNA in pancreatic cancer [J]. International Medicine and Health Guidance News, 2023, 29(13): 1790-1794. |
[4] |
Zhou Zhaonian, Zheng Weiqiang.
Research progress of platelets in liver cirrhosis [J]. International Medicine and Health Guidance News, 2023, 29(12): 1640-1643. |
[5] |
Liu Jingyuan, Zhang Fan, Bai Yan, Zhou Wenqin.
Efficacy and safety of moxibustion for cancer-related fatigue: an overview of systematic reviews [J]. International Medicine and Health Guidance News, 2023, 29(11): 1501-1506. |
[6] | Li Shihua, Zhou Hui, Yao Jun. Research progress on the role of miRNA in nasopharyngeal carcinoma [J]. International Medicine and Health Guidance News, 2022, 28(8): 1168-1171. |
[7] | Zhou Mingxuan, Li Jianchang. Research progress of Actinidia chinensis root against malignant tumors [J]. International Medicine and Health Guidance News, 2022, 28(8): 1176-1179. |
[8] | Zhang Yuqiong, Cui Hongwei, Yu Lei, Li Guohua, Lyu Xingliang. Correlation between traditional Chinese medicine syndromes of Wangbi disease and pro-inflammatory factors [J]. International Medicine and Health Guidance News, 2022, 28(7): 907-911. |
[9] | Hao Shanshan, Hou Yanqiang, Peng Liang. Research Progress on the mechanism of trained immunity and its role in diseases [J]. International Medicine and Health Guidance News, 2022, 28(23): 3312-. |
[10] | Su Xiaoran, Shi Shengli, Zheng Bin, Chen Wan. MRI imaging manifestations and literature review of toxic encephalopathy caused by Vietnamese sophora root in children [J]. International Medicine and Health Guidance News, 2022, 28(20): 2829-2832. |
[11] | Yang Libin, Xu Hanbiao. Research progress of urinary bladder tumor markers [J]. International Medicine and Health Guidance News, 2022, 28(20): 2898-2902. |
[12] | Wu Juan, Wang Juping. Construction and practice of artificial intelligence in the pre-review system of children's inpatient medical orders [J]. International Medicine and Health Guidance News, 2022, 28(2): 193-195. |
[13] | Dai Yu , Guo Jia , Yin Chongwang , Mao Xia , Liu Yangchun. Research progress of the assessment tools for fear of complications in diabetic patients [J]. International Medicine and Health Guidance News, 2022, 28(2): 280-283. |
[14] | Yang Caihong, Li Wanjun, Xiao Yunjian. Four cases of systemic lupus erythematosus complicated with lymphoma and literature review [J]. International Medicine and Health Guidance News, 2022, 28(15): 2178-2181. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||