[1] Niknam N, Nikooei S, Ghasemi H, et al. Circulating levels of HOTAIR- lncRNA are associated with disease progression and clinical parameters in type 2 diabetes patients [J]. Rep Biochem Mol Biol, 2023, 12(3): 448-457. DOI: 10.61186/rbmb.12.3.448.
[2] Wenzl FA, Mengozzi A, Mohammed SA, et al. Circulating long noncoding RNA signatures associate with incident diabetes in older adults: a prospective analysis from the VITA cohort study [J]. Diabetes Care, 2023, 46(6): 1239-1244. DOI: 10.2337/dc23-0012.
[3] Taheri M, Eghtedarian R, Ghafouri-Fard S, et al. Non-coding RNAs and type 2 diabetes mellitus [J]. Arch Physiol Biochem, 2023, 129(2): 526-535. DOI: 10.1080/13813455.2020.1843498.
[4] Wen CH, Berkman T, Li X, et al. Effect of intrathecal NIS-lncRNA antisense oligonucleotides on neuropathic pain caused by nerve trauma, chemotherapy, or diabetes mellitus [J]. Br J Anaesth, 2023, 130(2): 202-216. DOI: 10.1016/j.bja.2022.09.027.
[5] Santulli G. Non-coding RNAs in clinical practice: from biomarkers to therapeutic tools [J]. J Pharmacol Exp Ther, 2023, 384(1): 225-226. DOI: 10.1124/jpet.122.001457.
[6] Tanwar VS, Reddy MA, Das S, et al. Palmitic acid-induced long noncoding RNA PARAIL regulates inflammation via interaction with RNA-binding protein ELAVL1 in monocytes and macrophages [J]. Arterioscler Thromb Vasc Biol, 2023, 43(7): 1157-1175. DOI: 10.1161/ATVBAHA.122.318536.
[7] Wang Y, Selvaraj MS, Li X, et al. Rare variants in long non-coding RNAs are associated with blood lipid levels in the TOPMed whole-genome sequencing study [J]. Am J Hum Genet, 2023, 110(10): 1704-1717. DOI: 10.1016/j.ajhg.2023.09.003.
[8] Yang Q, Fang D, Chen J, et al. LncRNAs associated with oxidative stress in diabetic wound healing: regulatory mechanisms and application prospects [J]. Theranostics, 2023, 13(11): 3655-3674. DOI: 10.7150/thno.85823.
[9] Hu Z, Wang J, Pan T, et al. The exosome-transmitted lncRNA LOC100132249 induces endothelial dysfunction in diabetic retinopathy [J]. Diabetes, 2023, 72(9): 1307-1319. DOI: 10.2337/db22-0435.
[10] Zhu ZX, Liu Y, Wang J, et al. A novel lncRNA-mediated epigenetic regulatory mechanism in periodontitis [J]. Int J Biol Sci, 2023, 19(16): 5187-5203. DOI: 10.7150/ijbs.87977.
[11] Liao X, Ruan X, Yao P, et al. LncRNA-Gm9866 promotes liver fibrosis by activating TGFβ/Smad signaling via targeting Fam98b [J]. J Transl Med, 2023, 21(1): 778. DOI: 10.1186/s12967-023-04642-1.
[12] Mehta SL, Chelluboina B, Morris-Blanco KC, et al. Post-stroke brain can be protected by modulating the lncRNA FosDT [J]. J Cereb Blood Flow Metab, 2024, 44(2): 239-251. DOI: 10.1177/0271678X231212378.
[13] 苏慧超, 张臻, 唐晓慧, 等. 基于lncRNA模型预测宫颈癌免疫治疗应答 [J]. 国际医药卫生导报, 2023, 29(1): 34-43. DOI: 10.3760/cma.j.issn.1007-1245.2023.01.008.
[14] Zhang N, Cao W, He X, et al. Long non-coding RNAs in retinal ganglion cell apoptosis [J]. Cell Mol Neurobiol, 2023, 43(2): 561-574. DOI: 10.1007/s10571-022-01210-x.
[15] Huang S, Wu K, Li B, et al. lncRNA UCA1 inhibits mitochondrial dysfunction of skeletal muscle in type 2 diabetes mellitus by sequestering miR-143-3p to release FGF21 [J]. Cell Tissue Res, 2023, 391(3): 561-575. DOI: 10.1007/s00441-022-03733-7.
[16] Kumar J, Mohammad G, Alka K, et al. Mitochondrial genome-encoded long noncoding RNA and mitochondrial stability in diabetic retinopathy [J]. Diabetes, 2023, 72(4): 520-531. DOI: 10.1089/ars.2023.0303.
[17] Macvanin MT, Gluvic Z, Bajic V, et al. Novel insights regarding the role of noncoding RNAs in diabetes [J]. World J Diabetes, 2023, 14(7): 958-976. DOI: 10.4239/wjd.v14.i7.958.
[18] Xu Y, Kang X, Liu H, et al. LncRNA XIST promotes insulin resistance in gestational diabetes mellitus via the microRNA-181b-5p/NDRG2 axis [J]. Gen Physiol Biophys, 2023, 42(5): 443-455. DOI: 10.4149/gpb_2023019.
[19] Huang YN, Chiang SL, Lin YJ, et al. Long noncoding RNA SRA induces apoptosis of β-cells by promoting the IRAK1/LDHA/Lactate pathway [J]. Int J Mol Sci, 2021, 22(4): 1720. DOI: 10.3390/ijms22041720.
[20] Fang X, Song J, Chen Y, et al. LncRNA SNHG1 knockdown inhibits hyperglycemia induced ferroptosis via miR-16-5p/ACSL4 axis to alleviate diabetic nephropathy [J]. J Diabetes Investig, 2023, 14(9): 1056-1069. DOI: 10.1111/jdi.14036.
[21] Wang T, Li N, Yuan L, et al. MALAT1/miR-185-5p mediated high glucose-induced oxidative stress, mitochondrial injury and cardiomyocyte apoptosis via the RhoA/ROCK pathway [J]. J Cell Mol Med, 2023, 27(17): 2495-2506. DOI: 10.1111/jcmm.17835.
[22] Liu L, Li Y, Zhang X. LncRNA LINC01018 screens type 2 diabetes mellitus and regulates β cell function through modulating miR-499a-5p [J]. Horm Metab Res, 2023, 55(9): 642-648. DOI: 10.1055/a-2077-5177.
[23] Chen X, Song D. LncRNA MEG3 participates in caerulein-induced inflammatory injury in human pancreatic cells via regulating miR-195-5p/FGFR2 axis and inactivating NF-κB pathway [J]. Inflammation, 2021, 44(1): 160-173. DOI: 10.1007/s10753-020-01318-6.
[24] Cheng Y, Hu Q, Zhou J. Silencing of lncRNA PVT1 ameliorates streptozotocin-induced pancreatic β cell injury and enhances insulin secretory capacity by regulating miR-181a-5p [J]. Can J Physiol Pharmacol, 2021, 99(3): 303-312. DOI: 10.1139/cjpp-2020-0268.
[25] Lu H, Guo R, Zhang Y, et al. Inhibition of lncRNA TCONS_00077866 ameliorates the high stearic acid diet-induced mouse pancreatic β-cell inflammatory response by increasing miR-297b-5p to downregulate SAA3 expression [J]. Diabetes, 2021, 70(10): 2275-2288. DOI: 10.2337/db20-1079.
[26] Sempere LF, Powell K, Rana J, et al. Role of non-coding RNAs in tumor progression and metastasis in pancreatic cancer [J]. Cancer Metastasis Rev, 2021, 40(3): 761-776. DOI: 10.1007/s10555-021-09995-x.
[27] Law YY, Lee WF, Hsu CJ, et al. miR-let-7c-5p and miR-149-5p inhibit proinflammatory cytokine production in osteoarthritis and rheumatoid arthritis synovial fibroblasts [J]. Aging (Albany NY), 2021, 13(13): 17227-17236. DOI: 10.18632/aging.203201.
[28] Qiu L, Zheng L, Gan C, et al. circBICD2 targets miR-149-5p/IGF2BP1 axis to regulate oral squamous cell carcinoma progression [J]. J Oral Pathol Med, 2021, 50(7): 668-680. DOI: 10.1111/jop.13156.
[29] Wang X, Xu Q, Wang S. Overexpression of miR-149-5p attenuates cerebral ischemia/reperfusion (I/R) injury by targeting Notch2 [J]. Neuromolecular Med, 2022, 24(3): 279-289. DOI: 10.1007/s12017-021-08685-9.
[30] Ruan D, Liu Y, Wang X, et al. miR-149-5p protects against high glucose-induced pancreatic beta cell apoptosis via targeting the BH3-only protein BIM [J]. Exp Mol Pathol, 2019, 110: 104279. DOI: 10.1016/j.yexmp.2019.104279.
|