[1] Rowe-Magnus DA, Mazel D. Integrons: natural tools for bacterial genome evolution[J]. Curr Opin Microbiol, 2001,4(5):565-569. DOI: 10.1016/s1369-5274(00)00252-6.
[2] Neill JO. Antimicrobial Resistance-Tackling a crisis for the health and wealth of nations[R].2014.
[3] Tanne JH. Covid-19: Antimicrobial resistance rose dangerously in US during pandemic, CDC says[J]. BMJ, 2022,378:o1755. DOI: 10.1136/bmj.o1755.
[4] Levin-Reisman I, Ronin I, Gefen O, et al. Antibiotic tolerance facilitates the evolution of resistance[J]. Science, 2017,355(6327):826-830. DOI: 10.1126/science.aaj2191.
[5] Lewis K. The science of antibiotic discovery[J]. Cell, 2020,181(1):29-45. DOI: 10.1016/j.cell.2020.02.056.
[6] Nolivos S, Cayron J, Dedieu A, et al. Role of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by plasmid transfer[J]. Science, 2019,364(6442):778-782. DOI: 10.1126/science.aav6390.
[7] Stokes HW, Hall RM. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons[J]. Mol Microbiol, 1989,3(12):1669-1683. DOI: 10.1111/j.1365-2958.1989.tb00153.x.
[8] Gillings M, Boucher Y, Labbate M, et al. The evolution of class 1 integrons and the rise of antibiotic resistance[J]. J Bacteriol, 2008,190(14):5095-5100. DOI: 10.1128/JB.00152-08.
[9] Liebert CA, Hall RM, Summers AO. Transposon Tn21, flagship of the floating genome[J]. Microbiol Mol Biol Rev, 1999,63(3):507-522. DOI: 10.1128/MMBR.63.3.507- 522.1999.
[10] Hall RM, Stokes HW. Integrons: novel DNA elements which capture genes by site-specific recombination[J]. Genetica, 1993,90(2-3):115-132. DOI: 10.1007/BF01435034.
[11] Hanau-Berçot B, Podglajen I, Casin I, et al. An intrinsic control element for translational initiation in class 1 integrons[J]. Mol Microbiol, 2002,44(1):119-130. DOI: 10.1046/j.1365-2958.2002.02843.x.
[12] Hansson K, Sundström L, Pelletier A, et al. IntI2 integron integrase in Tn7[J]. J Bacteriol, 2002,184(6):1712-1721. DOI: 10.1128/JB.184.6.1712-1721.2002.
[13] Arakawa Y, Murakami M, Suzuki K, et al. A novel integron-like element carrying the metallo-beta-lactamase gene blaIMP[J]. Antimicrob Agents Chemother, 1995,39(7):1612-1615. DOI: 10.1128/AAC.39.7.1612.
[14] Correia M, Boavida F, Grosso F, et al. Molecular characterization of a new class 3 integron in Klebsiella pneumoniae[J]. Antimicrob Agents Chemother, 2003,47(9):2838-2843. DOI: 10.1128/AAC.47.9.2838- 2843.2003.
[15] Mazel D. Integrons: agents of bacterial evolution[J]. Nat Rev Microbiol, 2006,4(8):608-620. DOI: 10.1038/nrmicro1462.
[16] Hall RM, Collis CM. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination[J]. Mol Microbiol, 1995,15(4):593-600. DOI: 10.1111/j.1365-2958.1995.tb02368.x.
[17] Jové T, Da Re S, Denis F, et al. Inverse correlation between promoter strength and excision activity in class 1 integrons[J]. PLoS Genet, 2010,6(1):e1000793. DOI: 10.1371/journal.pgen.1000793.
[18] Papagiannitsis CC, Tzouvelekis LS, Miriagou V. Relative strengths of the class 1 integron promoter hybrid 2 and the combinations of strong and hybrid 1 with an active p2 promoter[J]. Antimicrob Agents Chemother, 2009,53(1):277-280. DOI: 10.1128/AAC.00912-08.
[19] Lévesque C, Brassard S, Lapointe J, et al. Diversity and relative strength of tandem promoters for the antibiotic-resistance genes of several integrons[J]. Gene, 1994,142(1):49-54. DOI: 10.1016/0378-1119(94)90353-0.
[20] Jové T, Da Re S, Tabesse A, et al. Corrigendum: Gene Expression in Class 2 Integrons Is SOS-Independent and Involves Two Pc Promoters[J]. Front Microbiol, 2017,8:2378. DOI: 10.3389/fmicb.2017.02378.
[21] Rodríguez-Minguela CM, Apajalahti JH, Chai B, et al. Worldwide prevalence of class 2 integrases outside the clinical setting is associated with human impact[J]. Appl Environ Microbiol, 2009,75(15):5100-5110. DOI: 10.1128/AEM.00133-09.
[22] Wei Q, Hu Q, Li S, et al. A novel functional class 2 integron in clinical Proteus mirabilis isolates[J]. J Antimicrob Chemother, 2014,69(4):973-976. DOI: 10.1093/jac/dkt456.
[23] Collis CM, Kim MJ, Partridge SR, et al. Characterization of the class 3 integron and the site-specific recombination system it determines[J]. J Bacteriol, 2002,184(11):3017-3026. DOI: 10.1128/JB.184.11.3017-3026.2002.
[24] Stokes HW, O'Gorman DB, Recchia GD, et al. Structure and function of 59-base element recombination sites associated with mobile gene cassettes[J]. Mol Microbiol, 1997,26(4):731-745. DOI: 10.1046/j.1365-2958.1997.6091980.x.
[25] Jacquier H, Zaoui C, Sanson-le Pors MJ, et al. Translation regulation of integrons gene cassette expression by the attC sites[J]. Mol Microbiol, 2009,72(6):1475-1486. DOI: 10.1111/j.1365-2958.2009.06736.x.
[26] Biskri L, Mazel D. Erythromycin esterase gene ere(A) is located in a functional gene cassette in an unusual class 2 integron[J]. Antimicrob Agents Chemother, 2003,47(10):3326-3331. DOI: 10.1128/AAC.47.10.3326-3331.2003.
[27] Naas T, Mikami Y, Imai T, et al. Characterization of In53, a class 1 plasmid- and composite transposon-located integron of Escherichia coli which carries an unusual array of gene cassettes[J]. J Bacteriol, 2001,183(1):235-249. DOI: 10.1128/JB.183.1.235-249.2001.
[28] MacDonald D, Demarre G, Bouvier M, et al. Structural basis for broad DNA-specificity in integron recombination[J]. Nature, 2006,440(7088):1157-1162. DOI: 10.1038/nature04643.
[29] Cagle CA, Shearer JES, Summers AO. Regulation of the integrase and cassette promoters of the class 1 integron by nucleoid-associated proteins[J]. Microbiology (Reading), 2011,157(Pt 10):2841-2853. DOI: 10.1099/mic.0.046987-0.
|