[1] 雷子涵,汪玉泉,苏妍妍,等.单中心维持性血液透析患者PTH与hs-cTnI水平的相关性研究[J].国际医药卫生导报,2022,28(12):1670-1673.DOI:10.3760/cma.j.issn.1007- 1245.2022.12.010.
[2] Himmelfarb J, Vanholder R, Mehrotra R, et al. The current and future landscape of dialysis[J].Nat Rev Nephrol,2020,16(10):573-585.DOI:10.1038/s41581-020-0315-4.
[3] Ting Sim JZ, Fong QW, Huang W, et al. Machine learning in medicine: what clinicians should know[J].Singapore Med J,2023,64(2):91-97.DOI:10.11622/smedj.2021054.
[4] Hahn P. Artificial intelligence and machine learning[J].Handchir Mikrochir Plast Chir,2019,51(1):62-67.DOI:10.1055/a-0826-4789.
[5] Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to machine learning, neural networks, and deep learning[J].Transl Vis Sci Technol,2020,9(2):14.DOI:10.1167/tvst.9.2.14.
[6] Jiang T, Gradus JL, Rosellini AJ. Supervised machine learning: a brief primer[J].Behav Ther,2020,51(5):675-687.DOI:10.1016/j.beth.2020.05.002.
[7] McAlpine ED, Michelow P, Celik T. The Utility of unsupervised machine learning in anatomic pathology[J].Am J Clin Pathol,2022,157(1):5-14.DOI:10.1093/ajcp/aqab085.
[8] Martinez O, Martinez C, Parra CA, et al. Machine learning for surgical time prediction[J].Comput Methods Programs Biomed,2021,208:106220.DOI:10.1016/j.cmpb.2021. 106220.
[9] Castiglioni I, Rundo L, Codari M, et al. AI applications to medical images: From machine learning to deep learning[J].Phys Med,2021,83:9-24.DOI:10.1016/j.ejmp.2021. 02.006.
[10] Sealfon RSG, Mariani LH, Kretzler M, et al. Machine learning, the kidney, and genotype-phenotype analysis[J].Kidney Int,2020,97(6):1141-1149.DOI:10.1016/j.kint.2020.02.028.
[11] 查丹凤,杨雄豪. 终末期肾病患者首次透析治疗时负担心理现状及影响因素分析[J]. 中国中西医结合肾病杂志,2021,22(12):1105-1107.DOI:10.3969/j.issn.1009- 587X.2021.12.026.
[12] 张瑶,周芸. 我国终末期肾病患者透析治疗的现状[J]. 中国医药,2021,16(8):1273-1276.DOI:10.3760/j.issn.1673-4777.2021.08.035.
[13] Handelman GS, Kok HK, Chandra RV, et al. eDoctor: machine learning and the future of medicine[J].J Intern Med,2018,284(6):603-619.DOI:10.1111/joim.12822.
[14] Arasu R, Jegatheesan D, Sivakumaran Y. Overview of hemodialysis access and assessment[J].Can Fam Physician,2022,68(8):577-582.DOI:10.46747/cfp.6808577.
[15] Masud A, Costanzo EJ, Zuckerman R, et al. The complications of vascular access in hemodialysis[J].Semin Thromb Hemost,2018,44(1):57-59.DOI:10.1055/s-0037-1606180.
[16] Chiang PY, Chao PC, Tu TY, et al. Machine learning classification for assessing the degree of stenosis and blood flow volume at arteriovenous fistulas of hemodialysis patients using a new photoplethysmography sensor device[J].Sensors (Basel),2019,19(15):3422.DOI:10.3390/s19153422.
[17] Heindel P, Dey T, Feliz JD, et al. Predicting radiocephalic arteriovenous fistula success with machine learning[J].NPJ Digit Med,2022,5(1):160.DOI:10.1038/s41746-022-00710-w.
[18] Ota K, Nishiura Y, Ishihara S, et al. Evaluation of hemodialysis arteriovenous bruit by deep learning[J].Sensors (Basel),2020,20(17):4852.DOI:10.3390/s20174852.
[19] Park JH, Park I, Han K, et al. Feasibility of deep learning-based analysis of auscultation for screening significant stenosis of native arteriovenous fistula for hemodialysis requiring angioplasty[J].Korean J Radiol,2022,23(10):949-958.DOI:10.3348/kjr.2022.0364.
[20] Guo X, Zhou W, Lu Q, et al. Assessing dry weight of hemodialysis patients via sparse laplacian regularized RVFL neural network with L2,1-norm[J].Biomed Res Int,2021,2021:6627650.DOI:10.1155/2021/6627650.
[21] Decaro C, Montanari GB, Molinari R, et al. Machine learning approach for prediction of hematic parameters in hemodialysis patients[J].IEEE J Transl Eng Health Med,2019,7:4100308.DOI:10.1109/JTEHM.2019.2938951.
[22] Matović V, Jeftić B, Trbojević-Stanković J, et al. Predicting anemia using NIR spectrum of spent dialysis fluid in hemodialysis patients[J].Sci Rep,2021,11(1):10549.DOI:10.1038/s41598-021-88821-4.
[23] Hu J, Liu Y, Heidari AA, et al. An effective model for predicting serum albumin level in hemodialysis patients[J].Comput Biol Med,2021,140:105054.DOI:10.1016/j.compbiomed.2021.105054.
[24] Huang JC, Tsai YC, Wu PY, et al. Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method[J].Comput Methods Programs Biomed,2020,195:105536.DOI:10.1016/j.cmpb.2020.105536.
[25] Liao H, Yang Y, Zeng Y, et al. Use machine learning to help identify possible sarcopenia cases in maintenance hemodialysis patients[J].BMC Nephrol,2023,24(1):34.DOI:10.1186/s12882-023-03084-7.
[26] Liu X, Zhang X, Guo X, et al. A self-representation-based fuzzy SVM model for predicting vascular calcification of hemodialysis patients[J].Comput Math Methods Med,2021,2021:2464821.DOI:10.1155/2021/2464821.
[27] National Kidney Foundation. KDOQI clinical practice guideline for hemodialysis adequacy: 2015 update[J].Am J Kidney Dis,2015,66(5):884-930.DOI:10.1053/j.ajkd.2015.07.015.
[28] Du A, Shi X, Guo X, et al. Assessing the adequacy of hemodialysis patients via the graph-based takagi-sugeno-kang fuzzy system[J].Comput Math Methods Med,2021,2021:9036322.DOI:10.1155/2021/9036322.
[29] 周志华. 机器学习[M].北京:清华大学出版社,2016.
[30] 邓玉洁.数据结构与算法[M].北京:北京邮电大学出版社,2017.
[31] Garcia-Montemayor V, Martin-Malo A, Barbieri C, et al. Predicting mortality in hemodialysis patients using machine learning analysis[J].Clin Kidney J,2020,14(5):1388-1395.DOI:10.1093/ckj/sfaa126.
[32] Yang CH, Chen YS, Moi SH, et al. Machine learning approaches for the mortality risk assessment of patients undergoing hemodialysis[J].Ther Adv Chronic Dis,2022,13:20406223221119617.DOI:10.1177/20406223221119617.
[33] Radović N, Prelević V, Erceg M, et al. Machine learning approach in mortality rate prediction for hemodialysis patients[J].Comput Methods Biomech Biomed Engin,2022,25(1):111-122.DOI:10.1080/10255842.2021.1937611.
[34] Khazaei S, Najafi-GhOBADI S, Ramezani-Doroh V. Construction data mining methods in the prediction of death in hemodialysis patients using support vector machine, neural network, logistic regression and decision tree[J].J Prev Med Hyg,2021,62(1):E222-E230.DOI:10.15167/2421-4248/jpmh2021.62.1.1837.
[35] 李靓璐,刘军娜,石泽璇,等. 人工智能在早期胃癌诊断和治疗中的应用现状及未来展望[J]. 国际医药卫生导报,2023,29(4):445-448.DOI:10.3760/cma.j.issn.1007-1245.2023. 04.001.
[36] Miller DD, Brown EW. Artificial intelligence in medical practice: the question to the answer?[J].Am J Med,2018,131(2):129-133.DOI:10.1016/j.amjmed.2017.10.035.
|