[1] Park J, Cheon JH. Incidence and prevalence of inflammatory bowel disease across Asia [J]. Yonsei Med J, 2021, 62(2): 99-108. DOI: 10.3349/ymj.2021.62.2.99.
[2] Kaplan GG. The global burden of IBD: from 2015 to 2025[J]. Nat Rev Gastroenterol Hepatol, 2015, 12(12): 720-727.
[3] Ng SC, Kaplan GG, Tang W, et al. Population density and risk of inflammatory bowel disease: a prospective population-based study in 13 countries or regions in Asia-Pacific [J]. Am J Gastroenterol, 2019, 114(1): 107-115. DOI: 10.1038/s41395-018-0233-2.
[4] Guan Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease [J]. J Immunol Res, 2019:7247238. DOI: 10.1155/2019/7247238.
[5] Tang Y, Kline KT, Zhong XS, et al. Chronic colitis upregulates microRNAs suppressing brain-derived neurotrophic factor in the adult heart [J]. PLoS One, 2021, 16(9):e0257280. DOI: 10.1371/journal.pone.0257280.
[6] Zhang Y, Bi YX, Chen J, et al. Association of Peroxiredoxin 1 and brain-derived neurotrophic factor serum levels with depression and anxiety symptoms in patients with irritable bowel syndrome [J]. Gen Hosp Psychiatry, 2021, 68:59-64. DOI: 10.1016/j.genhosppsych.2020.11.010.
[7] Radziejewski C, Robinson RC, DiStefano PS, et al. Dimeric structure and conformational stability of brain-derived neurotrophic factor and neurotrophin-3 [J]. Biochemistry, 1992, 31(18):4431-4436. DOI: 10.1021/bi00133a007.
[8] Hempstead BL. Brain-derived neurotrophic factor: three ligands, many actions [J]. Trans Am Clin Climatol Assoc, 2015, 126:9-19.
[9] Guzel TA, Mech K, Wroński M, et al. Brain-derived neurotrophic factor in gastroenterology oncology - short review of current literature [J]. Ann Agric Environ Med, 2021, 28(3):367-371. DOI: 10.26444/aaem/122628.
[10] Lommatzsch M, Braun A, Mannsfeldt A, et al. Abundant production of brain-derived neurotrophic factor by adult visceral epithelia. Implications for paracrine and target-derived Neurotrophic functions [J]. Am J Pathol, 1999, 155(4):1183-1193. DOI: 10.1016/S0002-9440(10)65221-2.
[11] Konturek TJ, Martinez C, Niesler B, et al. The role of brain-derived neurotrophic factor in irritable bowel syndrome [J]. Front Psychiatry, 2021, 11: 531385. DOI: 10.3389/fpsyt.2020.531385.
[12] Al-Qudah M, Shammala DA, Al-Dwairi A, et al. Dextran sodium sulphate (DSS)-induced colitis alters the expression of neurotrophins in smooth muscle cells of rat colon [J]. Physiol Res, 2017, 66(6):1009-1020. DOI: 10.33549/physiolres.933465.
[13] Al Qudah M, Alfaqih M, Al-Shboul O, et al. Effect of cytokine treatment on the expression and secretion of brain derived neurotrophic factor in the smooth muscle of the rat colon [J]. Biomed Rep, 2020, 13(1):55-60. DOI: 10.3892/br.2020.1302.
[14] 蒋慧灵, 郑倩华, 赵映, 等. 结直肠扩张法诱导大鼠内脏高敏感模型制作概述[J]. 中国实验动物学报, 2021,29(4):528-534.
[15] Qiao LY. Neurotrophin signaling and visceral hypersensitivity [J]. Front Biol (Beijing), 2014, 9(3): 216-224. DOI: 10.1007/s11515-014-1304-4.
[16] Delafoy L, Gelot A, Ardid D, et al. Interactive involvement of brain derived neurotrophic factor, nerve growth factor, and calcitonin gene related peptide in colonic hypersensitivity in the rat [J]. Gut, 2006, 55(7): 940-945. DOI: 10.1136/gut.2005.064063.
[17] Yang J, Yu Y, Yu H, et al. The role of brain-derived neurotrophic factor in experimental inflammation of mouse gut [J]. Eur J Pain, 2010, 14(6):574-579. DOI: 10.1016/j.ejpain.2009.10.007.
[18] Matayoshi S, Jiang N, Katafuchi T, et al. Actions of brain-derived neurotrophic factor on spinal nociceptive transmission during inflammation in the rat [J]. J Physiol, 2005, 569(Pt 2): 685-695. DOI: 10.1113/jphysiol.2005. 095331.
[19] 杨静,于岩波,于卉,等. 脑源性神经营养因子在结肠炎后内脏高敏感小鼠中的调节作用[J]. 胃肠病学,2012,17(2):91-95. DOI:10.3969/j.issn.1008-7125.2012.02.008.
[20] 欧阳钦. 慢性腹泻与炎症性肠病[J]. 中国实用内科杂志,2003,23(10):577-578. DOI:10.3969/j.issn.1005-2194. 2003.10.001.
[21] Chen F, Yu Y, Wang P, et al. Brain-derived neurotrophic factor accelerates gut motility in slow-transit constipation [J]. Acta Physiol (Oxf), 2014, 212(3):226-338. DOI: 10.1111/apha.12374.
[22] Grider JR, Piland BE, Gulick MA, et al. Brain-derived neurotrophic factor augments peristalsis by augmenting 5-HT and calcitonin gene-related peptide release [J]. Gastroenterology, 2006, 130(3): 771-780. DOI: 10.1053/j.gastro.2005.12.026.
[23] 樊菡,罗和生,全晓静,等. BDNF及其受体TrkB在慢性应激大鼠结肠动力紊乱中的调节作用及其机制[J]. 中华医学杂志,2015,95(28):2307-2311. DOI:10.3760/cma.j.issn. 0376- 2491.2015.28.016.
[24] 赖华梅,诸琦,王静,等. 脑源性神经营养因子在乳鼠结肠扩张刺激诱导的慢性内脏高敏感和肠道动力异常中的作用[J]. 胃肠病学,2008,13(4):223-227. DOI:10.3969/j.issn. 1008-7125.2008.04.009.
[25] Salvo Romero E, Alonso Cotoner C, Pardo Camacho C, et al. The intestinal barrier function and its involvement in digestive disease [J]. Rev Esp Enferm Dig, 2015, 107(11): 686-696. DOI: 10.17235/reed.2015.3846/2015.
[26] Arrieta MC, Bistritz L, Meddings JB. Alterations in intestinal permeability [J]. Gut, 2006, 55(10):1512-1520. DOI: 10.1136/gut.2005.085373.
[27] Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton [J]. Biochim Biophys Acta, 2008, 1778(3): 660-669. DOI: 10.1016/j.bbamem.2007.07.012.
[28] Krug SM, Schulzke JD, Fromm M. Tight junction, selective permeability, and related diseases [J]. Semin Cell Dev Biol, 2014, 36: 166-176. DOI: 10.1016/j.semcdb.2014.09.002.
[29] Yu YB, Zhao DY, Qi QQ, et al. BDNF modulates intestinal barrier integrity through regulating the expression of tight junction proteins [J]. Neurogastroenterol Motil, 2017, 29(3). DOI: 10.1111/nmo.12967.
[30] Yu YB, Li YQ. Enteric glial cells and their role in the intestinal epithelial barrier [J]. World J Gastroenterol, 2014, 20(32): 11273-11280. DOI: 10.3748/wjg.v20.i32.11273.
[31] Bassotti G, Villanacci V, Nascimbeni R, et al. Enteric neuroglial apoptosis in inflammatory bowel diseases [J]. J Crohns Colitis, 2009, 3(4):264-270. DOI: 10.1016/j.crohns.2009.06.004.
[32] Li H, Fan C, Lu H, et al. Protective role of berberine on ulcerative colitis through modulating enteric glial cells-intestinal epithelial cells-immune cells interactions [J]. Acta Pharm Sin B, 2020, 10(3):447-461. DOI: 10.1016/j.apsb.2019.08.006.
[33] Steinkamp M, Schulte N, Spaniol U, et al. Brain derived neurotrophic factor inhibits apoptosis in enteric glia during gut inflammation [J]. Med Sci Monit, 2012, 18(4): BR117-BR122. DOI: 10.12659/msm.882612.
[34] Neuendorf R, Harding A, Stello N, et al. Depression and anxiety in patients with inflammatory bowel disease: a systematic review [J]. J Psychosom Res, 2016, 87: 70-80. DOI: 10.1016/j.jpsychores.2016.06.001.
[35] Vegni E, Gilardi D, Bonovas S, et al. Illness perception in inflammatory bowel disease patients is different between patients with active disease or in remission: a prospective cohort study [J]. J Crohns Colitis, 2019, 13(4): 417-423. DOI: 10.1093/ecco-jcc/jjy183.
[36] Bannaga AS, Selinger CP. Inflammatory bowel disease and anxiety: links, risks, and challenges faced [J]. Clin Exp Gastroenterol, 2015, 8: 111-117. DOI: 10.2147/CEG.S57982.
[37] Castrén E, Monteggia LM. Brain-derived neurotrophic factor signaling in depression and antidepressant action [J]. Biol Psychiatry, 2021, 90(2): 128-136. DOI: 10.1016/j.biopsych.2021.05.008.
[38] Nakagawasai O, Yamada K, Takahashi K, Odaira T, et al. Liver hydrolysate prevents depressive-like behavior in an animal model of colitis: involvement of hippocampal neurogenesis via the AMPK/BDNF pathway [J]. Behav Brain Res, 2020, 390:112640. DOI: 10.1016/j.bbr.2020.112640.
[39] Han SK, Kim JK, Joo MK, et al. Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98 alleviate Escherichia coli-induced depression and gut dysbiosis in mice [J]. J Microbiol Biotechnol, 2020, 30(8):1222-1226. DOI: 10.4014/jmb.2002.02058.
[40] Xia B, Liu X, Li X, et al. Sesamol ameliorates dextran sulfate sodium-induced depression-like and anxiety-like behaviors in colitis mice: the potential involvement of the gut-brain axis [J]. Food Funct, 2022, 13(5): 2865-2883. DOI: 10.1039/d1fo03888e.
[41] Jang HM, Kim JK, Joo MK, et al. Transplantation of fecal microbiota from patients with inflammatory bowel disease and depression alters immune response and behavior in recipient mice [J]. Sci Rep, 2021, 11(1):20406. DOI: 10.1038/s41598-021-00088-x.
[42] Kristensen SL, Ahlehoff O, Lindhardsen J, et al. Inflammatory bowel disease is associated with an increased risk of hospitalization for heart failure: a Danish Nationwide Cohort study [J]. Circ Heart Fail, 2014, 7(5): 717-722. DOI: 10.1161/CIRCHEARTFAILURE. 114. 001152.
[43] Kappelman MD, Horvath-Puho E, Sandler RS, et al. Thromboembolic risk among Danish children and adults with inflammatory bowel diseases: a population-based nationwide study [J]. Gut, 2011, 60(7): 937-943. DOI: 10.1136/gut.2010.228585.
[44] Yarur AJ, Deshpande AR, Pechman DM, et al. Inflammatory bowel disease is associated with an increased incidence of cardiovascular events [J]. Am J Gastroenterol, 2011, 106(4):741-747. DOI: 10.1038/ajg. 2011.63.
[45] Panhwar MS, Mansoor E, Al-Kindi SG, et al. Risk of myocardial infarction in inflammatory bowel disease: a population-based national study [J]. Inflamm Bowel Dis, 2019, 25(6):1080-1087. DOI: 10.1093/ibd/izy354.
[46] Lian H, Zhong XS, Xiao Y, et al. Exosomal miR-29b of gut origin in patients with ulcerative colitis suppresses heart brain-derived neurotrophic factor [J]. Front Mol Biosci, 2022, 9: 759689. DOI: 10.3389/fmolb.2022.759689.
|