International Medicine and Health Guidance News ›› 2024, Vol. 30 ›› Issue (24): 4096-4106.DOI: 10.3760/cma.j.issn.1007-1245.2024.24.008
• New Medical Advances • Previous Articles Next Articles
Research progress on the role of Wnt/β-catenin signaling pathway in the pathogenesis of Alzheimer's disease
Kang Guowei, Li Xiao, Zhao Ruiqing, Feng Bo
Department of Neurology, Binzhou Medical University Hospital, Binzhou 256600, China
Received:
2024-05-09
Online:
2024-12-15
Published:
2024-12-21
Contact:
Feng Bo, Email: fpp-99@163.com
Supported by:
Developmental Plan of Science and Technology of Traditional Chinese Medicine in Shandong Province (2019-0502)
Wnt/β-catenin信号通路对阿尔茨海默病发病机制的研究进展
康国伟 李潇 赵瑞清 冯波
滨州医学院附属医院神经内科,滨州 256600
通讯作者:
冯波,Email:fpp-99@163.com
基金资助:
山东省中医药科技发展计划(2019-0502)
Kang Guowei, Li Xiao, Zhao Ruiqing, Feng Bo.
Research progress on the role of Wnt/β-catenin signaling pathway in the pathogenesis of Alzheimer's disease [J]. International Medicine and Health Guidance News, 2024, 30(24): 4096-4106.
康国伟 李潇 赵瑞清 冯波.
Wnt/β-catenin信号通路对阿尔茨海默病发病机制的研究进展 [J]. 国际医药卫生导报, 2024, 30(24): 4096-4106.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.imhgn.com/EN/10.3760/cma.j.issn.1007-1245.2024.24.008
[1] Hardan L, Filtchev D, Kassem R, et al. COVID-19 and Alzheimer's disease: a literature review[J]. Medicina (Kaunas), 2021, 57(11):1159. DOI: 10.3390/medicina57111159. [2] Li H, Liu CC, Zheng H, et al. Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer's disease -conformist, nonconformist, and realistic prospects for AD pathogenesis[J]. Transl Neurodegener, 2018, 7:34. DOI: 10.1186/s40035-018-0139-3. [3] Wilson DM, Cookson MR, Van Den Bosch L, et al. Hallmarks of neurodegenerative diseases[J]. Cell, 2023, 186(4):693-714. DOI: 10.1016/j.cell.2022.12.032. [4] Vallée A, Vallée JN, Lecarpentier Y. Wnt/β-catenin pathway: a possible link between hypertension and Alzheimer's disease[J]. Curr Hypertens Rep, 2022, 24(10):465-475. DOI: 10.1007/s11906-022-01209-1. [5] Liu J, Xiao Q, Xiao J, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities[J]. Signal Transduct Target Ther, 2022, 7(1):3. DOI: 10.1038/s41392-021-00762-6. [6] Jiang H, Zhang Z, Yu Y, et al. Drug discovery of DKK1 inhibitors[J]. Front Pharmacol, 2022, 13:847387. DOI: 10.3389/fphar.2022.847387. [7] Qi X, Hu Q, Elghobashi-Meinhardt N, et al. Molecular basis of Wnt biogenesis, secretion, and Wnt7-specific signaling[J]. Cell, 2023, 186(23):5028-5040.e14. DOI: 10.1016/j.cell.2023.09.021. [8] Zhong Q, Zhao Y, Ye F, et al. Cryo-EM structure of human Wntless in complex with Wnt3a[J]. Nat Commun, 2021, 12(1):4541. DOI: 10.1038/s41467-021-24731-3. [9] Manandhar S, Kabekkodu SP, Pai KSR. Aberrant canonical Wnt signaling: phytochemical based modulation[J]. Phytomedicine, 2020, 76:153243. DOI: 10.1016/j.phymed.2020.153243. [10] Lin J, Song T, Li C, et al. GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(5):118659. DOI: 10.1016/j.bbamcr.2020.118659. [11] Jin C, Wang T, Zhang D, et al. Acetyltransferase NAT10 regulates the Wnt/β-catenin signaling pathway to promote colorectal cancer progression via ac4C acetylation of KIF23 mRNA[J]. J Exp Clin Cancer Res, 2022, 41(1):345. DOI: 10.1186/s13046-022-02551-7. [12] Thornton TM, Hare B, Colié S, et al. Failure to inactivate nuclear GSK3β by Ser389-phosphorylation leads to focal neuronal death and prolonged fear response[J]. Neuropsychopharmacology, 2018, 43(2):393-405. DOI: 10.1038/npp.2017.187. [13] Shi Q, Chen YG. Regulation of Dishevelled protein activity and stability by post-translational modifications and autophagy[J]. Trends Biochem Sci, 2021, 46(12):1003-1016. DOI: 10.1016/j.tibs.2021.07.008. [14] Esaki N, Enomoto A, Takagishi M, et al. The Daple-CK1ε complex regulates Dvl2 phosphorylation and canonical Wnt signaling[J]. Biochem Biophys Res Commun, 2020, 532(3):406-413. DOI: 10.1016/j.bbrc.2020.08.066. [15] Surya K, Manickam N, Jayachandran KS, et al. Resveratrol mediated regulation of hippocampal neuroregenerative plasticity via SIRT1 pathway in synergy with Wnt signaling: neurotherapeutic implications to mitigate memory loss in Alzheimer's disease[J]. J Alzheimers Dis, 2023,94(s1):S125-S140. DOI: 10.3233/JAD-220559. [16] Wang Z, Li Z, Ji H. Direct targeting of β-catenin in the Wnt signaling pathway: current progress and perspectives[J]. Med Res Rev, 2021, 41(4):2109-2129. DOI: 10.1002/med.21787. [17] Park HB, Kim JW, Baek KH. Regulation of Wnt signaling through ubiquitination and deubiquitination in cancers[J]. Int J Mol Sci, 2020, 21(11):3904. DOI: 10.3390/ijms21113904. [18] Ng LF, Kaur P, Bunnag N, et al. WNT signaling in disease[J]. Cells, 2019, 8(8):826. DOI: 10.3390/cells8080826. [19] Ghafouri-Fard S, Noie Alamdari A, Noee Alamdari Y, et al. Role of PI3K/AKT pathway in squamous cell carcinoma with an especial focus on head and neck cancers[J]. Cancer Cell Int, 2022, 22(1):254. DOI: 10.1186/s12935-022-02676-x. [20] Li J, Wu F, Sheng F, et al. NOK/STYK1 interacts with GSK-3β and mediates Ser9 phosphorylation through activated Akt[J]. FEBS Lett, 2012, 586(21):3787-3792. DOI: 10.1016/j.febslet.2012.09.011. [21] Ege D. Action mechanisms of curcumin in Alzheimer's disease and its brain targeted delivery[J]. Materials (Basel), 2021, 14(12):3332. DOI: 10.3390/ma14123332. [22] Barzegar Behrooz A, Talaie Z, Jusheghani F, et al. Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma[J]. Int J Mol Sci, 2022, 23(3):1353. DOI: 10.3390/ijms23031353. [23] Fakhri S, Iranpanah A, Gravandi MM, et al. Natural products attenuate PI3K/Akt/mTOR signaling pathway: a promising strategy in regulating neurodegeneration[J]. Phytomedicine, 2021, 91:153664. DOI: 10.1016/j.phymed.2021.153664. [24] Tominaga K, Suzuki HI. TGF-β signaling in cellular senescence and aging-related pathology[J]. Int J Mol Sci, 2019, 20(20):5002. DOI: 10.3390/ijms20205002. [25] Kapoor M, Chinnathambi S. TGF-β1 signalling in Alzheimer's pathology and cytoskeletal reorganization: a specialized Tau perspective[J]. J Neuroinflammation, 2023, 20(1):72. DOI: 10.1186/s12974-023-02751-8. [26] Zhang G, Ge M, Han Z, et al. Wnt/β-catenin signaling pathway contributes to isoflurane postconditioning against cerebral ischemia-reperfusion injury and is possibly related to the transforming growth factorβ1/Smad3 signaling pathway[J]. Biomed Pharmacother, 2019, 110:420-430. DOI: 10.1016/j.biopha.2018.11.143. [27] Ma B, Hottiger MO. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation[J]. Front Immunol, 2016, 7:378. DOI: 10.3389/fimmu.2016.00378. [28] Yin C, Ye Z, Wu J, et al. Elevated Wnt2 and Wnt4 activate NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 following myocardial infarction[J]. EBioMedicine, 2021, 74:103745. DOI: 10.1016/j.ebiom.2021.103745. [29] He J, Wo D, Ma E, et al. Huoxin pill prevents excessive inflammation and cardiac dysfunction following myocardial infarction by inhibiting adverse Wnt/β-catenin signaling activation[J]. Phytomedicine, 2022, 104:154293. DOI: 10.1016/j.phymed.2022.154293. [30] Piao C, Sang J, Kou Z, et al. Effects of exosomes derived from adipose-derived mesenchymal stem cells on pyroptosis and regeneration of injured liver[J]. Int J Mol Sci, 2022, 23(20):12065. DOI: 10.3390/ijms232012065. [31] Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?[J]. Nat Rev Neurol, 2021, 17(3):157-172. DOI: 10.1038/s41582-020-00435-y. [32] Chen Y, Yu Y. Tau and neuroinflammation in Alzheimer's disease: interplay mechanisms and clinical translation[J]. J Neuroinflammation, 2023, 20(1):165. DOI: 10.1186/s12974-023-02853-3. [33] Chou V, Pearse RV, Aylward AJ, et al. INPP5D regulates inflammasome activation in human microglia[J]. Nat Commun, 2023, 14(1):7552. DOI: 10.1038/s41467-023- 42819-w. [34] Wadhwa M, Prabhakar A, Anand JP, et al. Complement activation sustains neuroinflammation and deteriorates adult neurogenesis and spatial memory impairment in rat hippocampus following sleep deprivation[J]. Brain Behav Immun, 2019, 82:129-144. DOI: 10.1016/j.bbi.2019. 08.004. [35] Barnabei L, Laplantine E, Mbongo W, et al. NF-κB: at the borders of autoimmunity and inflammation[J]. Front Immunol, 2021, 12:716469. DOI: 10.3389/fimmu.2021. 716469. [36] Liu X, Wang K, Wei X, et al. Interaction of NF-κB and Wnt/β-catenin signaling pathways in Alzheimer's disease and potential active drug treatments[J]. Neurochem Res, 2021, 46(4):711-731. DOI: 10.1007/s11064-021-03227-y. [37] Salem MA, Budzyńska B, Kowalczyk J, et al. Tadalafil and bergapten mitigate streptozotocin-induced sporadic Alzheimer's disease in mice via modulating neuroinflammation, PI3K/Akt, Wnt/β-catenin, AMPK/mTOR signaling pathways[J]. Toxicol Appl Pharmacol, 2021, 429:115697. DOI: 10.1016/j.taap.2021.115697. [38] Kong P, Cui ZY, Huang XF, et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention[J]. Signal Transduct Target Ther, 2022, 7(1):131. DOI: 10.1038/s41392-022-00955-7. [39] Vallee A, Lecarpentier Y, Vallée JN. Wnt/β-catenin pathway and circadian rhythms in obsessive-compulsive disorder[J]. Neural Regen Res, 2022, 17(10):2126-2130. DOI: 10.4103/1673-5374.332133. [40] Kumar S, Reddy PH. The role of synaptic microRNAs in Alzheimer's disease[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(12):165937. DOI: 10.1016/j.bbadis.2020.165937. [41] Zhao J, Fu Y, Yamazaki Y, et al. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids[J]. Nat Commun, 2020, 11(1):5540. DOI: 10.1038/s41467-020-19264-0. [42] Roy ER, Wang B, Wan YW, et al. Type Ⅰ interferon response drives neuroinflammation and synapse loss in Alzheimer disease[J]. J Clin Invest, 2020, 130(4):1912-1930. DOI: 10.1172/JCI133737. [43] Wu C, Bendriem RM, Freed WJ, et al. Transcriptome analysis of human dorsal striatum implicates attenuated canonical Wnt signaling in neuroinflammation and in age-related impairment of striatal neurogenesis and synaptic plasticity[J]. Restor Neurol Neurosci, 2021,39(4):247-266. DOI: 10.3233/RNN-211161. [44] Predes D, Maia LA, Matias I, et al. The flavonol quercitrin hinders GSK3 activity and potentiates the Wnt/β-Catenin signaling pathway[J]. Int J Mol Sci, 2022, 23(20):12078. DOI: 10.3390/ijms232012078. [45] Godoy JA, Espinoza-Caicedo J, Inestrosa NC. Morphological neurite changes induced by porcupine inhibition are rescued by Wnt ligands[J]. Cell Commun Signal, 2021, 19(1):87. DOI: 10.1186/s12964-021- 00709-y. [46] Bai R, Guo J, Ye XY, et al. Oxidative stress: the core pathogenesis and mechanism of Alzheimer's disease[J]. Ageing Res Rev, 2022, 77:101619. DOI: 10.1016/j.arr.2022.101619. [47] Song T, Song X, Zhu C, et al. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: a meta-analysis of in vivo magnetic resonance spectroscopy studies[J]. Ageing Res Rev, 2021, 72:101503. DOI: 10.1016/j.arr.2021.101503. [48] Calvo-Rodriguez M, Kharitonova EK, Snyder AC, et al. Real-time imaging of mitochondrial redox reveals increased mitochondrial oxidative stress associated with amyloid β aggregates in vivo in a mouse model of Alzheimer's disease[J]. Mol Neurodegener, 2024, 19(1):6. DOI: 10.1186/s13024-024-00702-2. [49] Abozaid OAR, Sallam MW, El-Sonbaty S, et al. Resveratrol-selenium nanoparticles alleviate neuroinflammation and neurotoxicity in a rat model of Alzheimer's disease by regulating Sirt1/miRNA-134/GSK3β expression[J]. Biol Trace Elem Res, 2022, 200(12):5104-5114. DOI: 10.1007/s12011-021-03073-7. [50] Iwanowski T, Kołkowski K, Nowicki RJ, et al. Etiopathogenesis and emerging methods for treatment of vitiligo[J]. Int J Mol Sci, 2023, 24(11):9749. DOI: 10.3390/ijms24119749. [51] Marchetti B. Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson's disease[J]. Redox Biol, 2020, 36:101664. DOI: 10.1016/j.redox.2020.101664. [52] Chen X, Yao N, Mao Y, et al. Activation of the Wnt/β-catenin/CYP1B1 pathway alleviates oxidative stress and protects the blood-brain barrier under cerebral ischemia/reperfusion conditions[J]. Neural Regen Res, 2024, 19(7):1541-1547. DOI: 10.4103/1673-5374.386398. [53] Wu JJ, Yang Y, Wan Y, et al. New insights into the role and mechanisms of ginsenoside Rg1 in the management of Alzheimer's disease[J]. Biomed Pharmacother, 2022, 152:113207. DOI: 10.1016/j.biopha.2022.113207. |
[1] |
Jiang Zejun, Tang Shengyu, Yang Hongling.
Roles of inflammatory biomarkers in the evaluation of clinical outcomes in chronic heart failure [J]. International Medicine and Health Guidance News, 2025, 31(1): 42-46. |
[2] |
Wu Jinglin, Lu Manlu, Li Mingzhen, Liu Lu, Yu Yan, Pan Lei.
Recent advances of the research between gut microbiota and obstructive sleep apnea syndrome combined with cognitive impairment [J]. International Medicine and Health Guidance News, 2025, 31(1): 47-50. |
[3] |
Zeng Xianhu, Li Ming, Li Zilong, Xiang Xu, Tian Hui, Li Huizhu, Ma Longjie, Fang Xiaoli, Chen Li, Tang Ran.
Research progress on ulcerative colitis in traditional Chinese and western medicines [J]. International Medicine and Health Guidance News, 2024, 30(9): 1415-1418. |
[4] |
Gao Wenwen, Zhang Xiang, Wang Hong, Yin Yanhui.
New progress in treatment of intestinal bacterial overgrowth [J]. International Medicine and Health Guidance News, 2024, 30(9): 1418-1421. |
[5] |
Sun Xiao, Liu Chengxia, Wang Na, Hao Jiahui, Chu Linlin, Li Chengyu.
Relationship between putrescine and macrophage polarization in gastric "inflammatory carcinoma transformation" [J]. International Medicine and Health Guidance News, 2024, 30(9): 1426-1429. |
[6] |
Li Chun, Du Qiaoting, Liu Lingling.
Progress in treatment of primiparae with postpartum lactation deficiency [J]. International Medicine and Health Guidance News, 2024, 30(9): 1446-1449. |
[7] |
He Xiangqin, Yang Fang, Ding Guofeng.
Research progress of traditional Chinese patent medicine related liver injury [J]. International Medicine and Health Guidance News, 2024, 30(9): 1450-1453. |
[8] |
Yang Shoujuan, Zhang Haitao, Cui Mingli, Wang Jian, Li Yang, Cheng Yanli.
Research progress of Wnt signaling pathway in acute myocardial infarction [J]. International Medicine and Health Guidance News, 2024, 30(8): 1291-1296. |
[9] |
Zou Haozhen, Yang Jia, Xi Zhefan, Ji Rui, Dong Hua.
Advances in single-cell RNA sequencing in kidney disease [J]. International Medicine and Health Guidance News, 2024, 30(8): 1307-1311. |
[10] |
Shao Shuang, Guo Jiwei, Meng Wei.
m6A and m5C methylation modification affects the initiation and development of cancers by regulating cellular proliferation and metastasis [J]. International Medicine and Health Guidance News, 2024, 30(8): 1316-1320. |
[11] |
Zhao Bo, Li Siwei, Xing Tian, Gao Ping, Zhu Hongzhe, Li Min.
Research progress of TRPV1 channel in infectious diseases [J]. International Medicine and Health Guidance News, 2024, 30(7): 1057-1062. |
[12] |
Li Mengqi, Li Peng, Du Gangqiang, Sun Hongsuo, Zhang Kai.
Research progress on incidence rate and surgical treatment of long bone nonunion [J]. International Medicine and Health Guidance News, 2024, 30(7): 1062-1066. |
[13] |
Ding Jiawen, Li Na.
Research progress on ESBLs positive Klebsiella pneumoniae [J]. International Medicine and Health Guidance News, 2024, 30(7): 1071-1074. |
[14] |
Chen Xiaolin, Yang Zhen.
Research progress on the relevance of HR-HPV load and cervical precancerous lesions and cervical cancer [J]. International Medicine and Health Guidance News, 2024, 30(6): 932-935. |
[15] |
Zou Haozhen, Yang Jia, Xi Zhefan, Ji Rui, Dong Hua.
Advances in single-cell RNA sequencing in secondary nephrosis [J]. International Medicine and Health Guidance News, 2024, 30(6): 936-940. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||