[1] Wang Y, Wang L, Sun Y, et al. Prediction model for the risk of osteoporosis incorporating factors of disease history and living habits in physical examination of population in Chongqing, Southwest China: based on artificial neural network[J]. BMC Public Health, 2021, 21(1):991. DOI: 10.1186/s12889-021-11002-5.
[2] Arceo-Mendoza RM, Camacho P. Prediction of fracture risk in patients with osteoporosis: a brief review[J]. Womens Health (Lond), 2015, 11(4):477-482; quiz 483-484. DOI: 10.2217/whe.15.14.
[3] 蒙永晖.骨质疏松性脊柱骨折的研究进展[J].国际医药卫生导报,2022,28(9):1330-1333. DOI:10.3760/cma.j.issn.1007-1245.2022.09.035.
[4] 王洋,曾静,李春霖,等.骨质疏松性骨折风险预测工具的研究现状[J].中国骨质疏松杂志,2021,27(1):143-147.
[5] Migliorini F, Giorgino R, Hildebrand F, et al. Fragility fractures: risk factors and management in the elderly[J]. Medicina (Kaunas), 2021, 57(10):1119. DOI: 10.3390/medicina57101119.
[6] Marsh D, Mitchell P, Falaschi P, et al. The multidisciplinary approach to fragility fractures around the world: an overview. 2020. In: Falaschi P, Marsh D, editors. Orthogeriatrics: the management of older patients with fragility fractures [Internet]. 2nd ed. Cham (CH): Springer; 2021. Chapter 1.
[7] Si L, Winzenberg TM, Jiang Q, et al. Projection of osteoporosis-related fractures and costs in China: 2010-2050[J]. Osteoporos Int, 2015, 26(7):1929-1937. DOI: 10.1007/s00198-015-3093-2.
[8] «中国老年骨质疏松诊疗指南»(2018)工作组,马远征,王以朋,等.中国老年骨质疏松诊疗指南(2018)[J].中国老年学杂志,2019,39(11):2561-2579. DOI:10.3969/j.issn.1005-9202.2019.11.001.
[9] Crandall CJ, Larson J, LaCroix A, et al. Predicting fracture risk in younger postmenopausal women: comparison of the Garvan and FRAX risk calculators in the women's health initiative study[J]. J Gen Intern Med, 2019, 34(2):235-242. DOI: 10.1007/s11606-018-4696-z.
[10] Reid IR, Horne AM, Mihov B, et al. Predictors of fracture in older women with osteopenic hip bone mineral density treated with zoledronate[J]. J Bone Miner Res, 2021, 36(1):61-66. DOI: 10.1002/jbmr.4167.
[11] Frølich J, Winkler LA, Abrahamsen B, et al. Assessment of fracture risk in women with eating disorders: the utility of dual-energy x-ray absorptiometry (DXA)-clinical cohort study[J]. Int J Eat Disord, 2020, 53(4):595-605. DOI: 10.1002/eat.23245.
[12] 郑晓熙,侯建雷,邱晓蓉,等.老年高骨转换型骨质疏松的危险因素及康复评定[J].科技导报,2023,41(23):42-48.
[13] 陈宾,邹士平,王跃辉,等.区域CT值在预测股骨近端骨折中的价值[J].中国骨伤,2023,36(12):1142-1146. DOI:10.12200/j.issn.1003-0034.2023.12.007.
[14] 李雪光,陈礼,张文奎,等.血清miR-21、腰椎椎体CT值及骨密度值预测老年骨质疏松性椎体压缩性骨折术后再骨折发生风险的临床价值[J].中国老年学杂志,2023,43(24):5930-5932. DOI:10.3969/j.issn.1005-9202.2023.24.012.
[15] 李黎,唐魁韩,王荣,等.骨小梁评分结合骨密度用于骨质疏松诊疗及骨折风险预测[J].中国骨质疏松杂志,2023,29(12):1786-1790,1812. DOI:10.3969/j.issn.1006-7108. 2023.12.012.
[16] Lee SJ, Graffy PM, Zea RD, et al. Future osteoporotic fracture risk related to lumbar vertebral trabecular attenuation measured at routine body CT[J]. J Bone Miner Res, 2018, 33(5):860-867. DOI: 10.1002/jbmr.3383.
[17] 李楠,张凤梅.老年骨质疏松性骨折患者自我感受负担现状及与医学应对方式和残疾接受度相关性分析[J].现代医药卫生,2023,39(17):3018-3021. DOI:10.3969/j.issn.1009- 5519.2023.17.029.
[18] 何玉莲,潘荣佳,彭逸思,等.老年髋部脆性骨折病人二次骨折预防与管理最佳证据总结[J].循证护理,2024,10(1):20-25. DOI:10.12102/j.issn.2095-8668.2024.01.004.
[19] 吴艳艳,马苏杰.早期康复护理在老年骨质疏松性椎体压缩性骨折患者中的应用效果[J].国际医药卫生导报,2023,29(11):1612-1616. DOI:10.3760/cma.j.issn.1007-1245. 2023.11.031.
[20] 王晶,罗碧华,肖水源.骨质疏松症患者生活质量评估工具的研究[J].广西医科大学学报,2024,41(1):131-136. DOI:10.16190/j.cnki.45-1211/r.2024.01.019.
[21] 杨朝旭,邢栋,张隆,等.老年骨质疏松性骨折术后再骨折的流行病学调查[J].中国骨与关节损伤杂志,2022,37(3):277-279. DOI:10.7531/j.issn.1672-9935.2022.03.014.
[22] 邓强,乔小万,李中锋,等.骨质疏松性椎体压缩骨折椎体成形术后非手术椎体再骨折危险因素探讨[J].中国骨质疏松杂志,2021,27(4):613-617,624. DOI:10.3969/j.issn.1006- 7108.2021.04.027.
[23] 叶洁玉,陈立红,阮华耀,等.老年骨质疏松性椎体骨折患者再发椎体骨折的危险因素分析[J].中国临床护理,2023,15(12):765-768,772. DOI:10.3969/j.issn.1674-3768. 2023.12.010.
[24] 朱心雨,郭立,黄鹏,等.CT纹理特征联合机器学习对发生骨质疏松性压缩骨折的预测价值[J].中国临床医学影像杂志,2023,34(6):428-432. DOI:10.12117/jccmi.2023.06.010.
[25] 雷璐. 基于机器学习的骨质疏松风险预测研究[D]. 北京:北京邮电大学,2022. DOI:10.26969/d.cnki.gbydu.2020. 003111.
[26] 史凡凡,赵继荣,马同,等.人工智能在骨质疏松症中应用的研究进展[J].中国骨质疏松杂志,2023,29(7):1047-1051. DOI:10.3969/j.issn.1006-7108.2023.07.022.
[27] 张玉,张书超,董梁,等.中老年男性原发性骨质疏松患者骨折风险预测模型列线图的构建及应用[J].河北医药,2022,44(18):2743-2746,2751. DOI:10.3969/j.issn.1002-7386. 2022.18.005.
[28] 章轶立,魏戌,聂佩芸,等.基于SMOTE算法和决策树的绝经后骨质疏松性骨折分类模型建构[J].中国骨质疏松杂志,2019,25(1):1-5. DOI:10.3969/j.issn.1006-7108.2019. 01.001.
[29] 于健,周冰倩,王朝,等.随机森林模型和Logistic回归模型预测髋部骨折患者住院时间延长的效能比较[J].中国组织工程研究,2023,27(34):5413-5420.
[30] Villamor E, Monserrat C, Del Río L, et al. Prediction of osteoporotic hip fracture in postmenopausal women through patient-specific FE analyses and machine learning[J]. Comput Methods Programs Biomed, 2020, 193:105484. DOI: 10.1016/j.cmpb.2020.105484.
[31] 吴天旺,李永威,张李宝,等.老年髋部骨折手术患者术后1年内死亡风险预测模型建立与验证[J].中国老年学杂志,2022,42(22):5504-5507. DOI:10.3969/j.issn.1005-9202. 2022.22.030.
[32] 丘倩怡,余庆龄,张晓东.深度学习在椎体骨质疏松及其骨折中的研究进展[J].中国骨质疏松杂志,2024,30(2):280-284.
|