[1] 梁木华,郭锦均,郑燕冰,等.抗凝血酶Ⅲ与D-二聚体和血小板检测对儿童脓毒症的诊断价值[J].国际医药卫生导报,2021,27(3):356-358.DOI:10.3760/cma.j.issn.1007-1245. 2021.03.012.
[2] Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations[J]. Am J Respir Crit Care Med, 2016, 193(3):259-272. DOI: 10.1164/rccm.201504-0781OC.
[3] 郑苏莹,方泽浩,金晶,等.铁死亡的调控机制及其在血液系统疾病中的研究进展[J].中国细胞生物学学报,2022,44(6):1165-1173. DOI:10.11844/cjcb.2022.06.0022.
[4] 王宁宁,朱淑霞,张越华.铁死亡在神经胶质瘤治疗中的作用[J].国际医药卫生导报,2022,28(17):2383-2385. DOI:10.3760/cma.j.issn.1007-1245.2022.17.003.
[5] 李嘉柔,王洪亮.Keap1/Nrf2/ARE信号通路可通过调节氧化应激缓解脓毒症过程中的细胞铁死亡[J].中华危重病急救医学,2021,33(7):881-884. DOI:10.3760/cma.j.cn121430-20210130-00180.
[6] 马利,修欣欣,翟颖,等.降钙素原在严重创伤后脓毒血症诊断及预后中的临床应用价值[J].临床血液学杂志,2019,32(6):411-414. DOI:10.13201/j.issn.1004- 2806-b.2019.06.002.
[7] 范可欣,朱鹏汇,王云,等.基于机器学习算法建立胎母输血综合征预测模型[J].临床输血与检验,2022,24(4):427-432. DOI:10.3969/j.issn.1671-2587.2022.04.004.
[8] 宿家铭,彭景,陈海敏,等.基于生物信息学和机器学习鉴定2型糖尿病肾病肾小管间质损伤相关基因[J].海南医学院学报,2022,28(20):1558-1566,1578. DOI:10.13210/j.cnki.jhmu.20220825.005.
[9] 王怀涛,高峰,谭晓冬.鲁斯可皂苷元通过诱导铁死亡对胰腺癌细胞的抑制作用研究[J].中国临床药理学杂志,2022,38(15):1787-1791. DOI:10.13699/j.cnki.1001-6821. 2022.15.020.
[10] 裘雪莹,贾连群,宋囡,等.基于铁死亡相关蛋白探讨化瘀祛痰方对高脂合并肝癌小鼠的影响及机制[J].中华中医药学刊,2021,39(9):137-141,后插15. DOI:10.13193/j.issn.1673-7717.2021.09.035.
[11] 李秋畅,闫顺昌,蒙亚珍,等.Nrf2-GPX4介导的铁死亡通路参与右美托咪定对脑出血大鼠神经保护作用的机制研究[J].天津医药,2022,50(8):817-821. DOI:10.11958/20212825.
[12] 刘畅,程晓丹,孙家安,等.丹酚酸B通过调控Cx43抑制铁死亡对心肌梗死大鼠模型的保护机制研究[J].中国病理生理杂志,2022,38(6):1032-1039. DOI:10.3969/j.issn.1000- 4718.2022.06.010.
[13] Liu Y, Tan S, Wu Y, et al. The emerging role of ferroptosis in sepsis[J]. DNA Cell Biol, 2022, 41(4):368-380. DOI: 10.1089/dna.2021.1072.
[14] 龙伟,徐丽华,成燕,等.铁死亡参与小鼠脓毒血症相关急性肺损伤的形成[J].西南国防医药,2020,30(8):725-728. DOI:10.3969/j.issn.1004-0188.2020.08.007.
[15] Li JY, Ren C, Wang LX, et al. Sestrin2 protects dendrite cells against ferroptosis induced by sepsis[J]. Cell Death Dis, 2021, 12(9):834. DOI: 10.1038/s41419-021-04122-8.
[16] He Y, Peng Y, Tao L, et al. Peroxiredoxin-1 aggravates lipopolysaccharide-induced septic shock via promoting inflammation[J]. Biochem Biophys Res Commun, 2020, 527(4):861-865. DOI: 10.1016/j.bbrc.2020.04.149.
[17] Wang X, Wang LT, Yu B. UBE2D1 and COX7C as potential biomarkers of diabetes-related sepsis[J]. Biomed Res Int, 2022, 2022:9463717. DOI: 10.1155/2022/9463717.
[18] Ding YH, Miao RX, Zhang Q. Hypaphorine exerts anti-inflammatory effects in sepsis induced acute lung injury via modulating DUSP1/p38/JNK pathway[J]. Kaohsiung J Med Sci, 2021, 37(10):883-893. DOI: 10.1002/kjm2.12418.
[19] Yang YF, Lee YC, Wang YY, et al. YWHAE promotes proliferation, metastasis, and chemoresistance in breast cancer cells[J]. Kaohsiung J Med Sci, 2019, 35(7):408-416. DOI: 10.1002/kjm2.12075.
[20] Li H, Liu W, Su W, et al. Changes in plasma HDL and its subcomponents HDL2b and HDL3 regulate inflammatory response by modulating SOCS1 signaling to affect severity degree and prognosis of sepsis[J]. Infect Genet Evol, 2021, 91:104804. DOI: 10.1016/j.meegid.2021.104804.
[21] 侯健,王君颖.多发性骨髓瘤免疫微环境的研究进展[J].肿瘤防治研究,2022,49(5):375-378. DOI:10.3971/j.issn.1000-8578.2022.21.1427.
[22] Fay KT, Ford ML, Coopersmith CM. The intestinal microenvironment in sepsis[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(10 Pt B):2574-2583. DOI: 10.1016/j.bbadis.2017.03.005.
[23] Cho DS, Schmitt RE, Dasgupta A, et al. Single-cell deconstruction of post-sepsis skeletal muscle and adipose tissue microenvironments[J]. J Cachexia Sarcopenia Muscle, 2020, 11(5):1351-1363. DOI: 10.1002/jcsm.12596.
|