[1] 朱兴旺,严俊,何英丽,等. 基于深度学习的人工智能技术在结直肠息肉性质鉴别中的应用[J]. 世界华人消化杂志,2021,29(20):1201-1206. DOI:10.11569/wcjd.v29.i20.1201.
[2] Min JK, Kwak MS, Cha JM. Overview of deep learning in gastrointestinal endoscopy [J]. Gut Liver, 2019, 13(4): 388-393. DOI: 10.5009/gnl18384.
[3] Ahmad OF, Soares AS, Mazomenos E, et al. Artificial intelligence and computer-aided diagnosis in colonoscopy: current evidence and future directions [J]. Lancet Gastroenterol Hepatol, 2019, 4(1): 71-80. DOI: 10.1016/S2468-1253(18)30282-6.
[4] 姜良慧,周长宏. 深度学习技术在胃肠镜诊断中应用研究进展[J]. 青岛大学学报(医学版),2020,56(3):373-378. DOI:10.11712/jms.2096-5532.2020.56.076.
[5] Byrne MF, Chapados N, Soudan F, et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model [J]. Gut, 2019, 68(1):94-100. DOI: 10.1136/gutjnl-2017-314547.
[6] Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study [J]. Gut, 2019, 68(10):1813-1819. DOI: 10.1136/gutjnl-2018-317500.
[7] Yang YJ, Cho BJ, Lee MJ, et al. Automated classification of colorectal neoplasms in white-light colonoscopy images via deep learning [J]. J Clin Med, 2020, 9(5): 1593. DOI: 10.3390/jcm9051593.
[8] Yahagi M, Okabayashi K, Hasegawa H, et al. The worse prognosis of right-sided compared with left-sided colon cancers: a systematic review and meta-analysis [J]. J Gastrointest Surg, 2016, 20(3): 648-655. DOI: 10.1007/s11605-015-3026-6.
[9] Brungs D, Aghmesheh M, de Souza P, et al. Sidedness is prognostic in locoregional colon cancer: an analysis of 9509 Australian patients [J]. BMC Cancer, 2017, 17(1): 251. DOI: 10.1186/s12885-017-3255-z.
[10] Petrelli F, Tomasello G, Borgonovo K, et al. Prognostic survival associated with left-sided vs right-sided colon cancer: a systematic review and meta-analysis [J]. JAMA Oncol, 2017, 3(2): 211-219. DOI: 10.1001/jamaoncol. 2016.4227.
[11] Kim D, Kim SY, Lee JS, et al. Primary tumor location predicts poor clinical outcome with cetuximab in RAS wild-type metastatic colorectal cancer [J]. BMC Gastroenterol, 2017, 17(1):121. DOI: 10.1186/s12876- 017-0694-6.
[12] Winawer SJ, Zauber AG, Ho MN, et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup [J]. N Engl J Med, 1993, 329(27):1977-1981. DOI: 10.1056/NEJM19931230329- 2701.
[13] Saito H, Tanimoto T, Ozawa T, et al. Automatic anatomical classification of colonoscopic images using deep convolutional neural networks [J]. Gastroenterol Rep (Oxf), 2020, 9(3): 226-233. DOI: 10.1093/gastro/goaa078.
[14] Harewood GC, Sharma VK, de Garmo P. Impact of colonoscopy preparation quality on detection of suspected colonic neoplasia [J]. Gastrointest Endosc, 2003, 58(1):76-79. DOI: 10.1067/mge.2003.294.
[15] Froehlich F, Wietlisbach V, Gonvers JJ, et al. Impact of colonic cleansing on quality and diagnostic yield of colonoscopy: the European Panel of Appropriateness of Gastrointestinal Endoscopy European multicenter study [J]. Gastrointest Endosc, 2005, 61(3): 378-384. DOI: 10.1016/s0016-5107(04)02776-2.
[16] Zhou J, Wu L, Wan X, et al. A novel artificial intelligence system for the assessment of bowel preparation (with video) [J]. Gastrointest Endosc, 2020, 91(2): 428-435.e2. DOI: 10.1016/j.gie.2019.11.026.
[17] Zhou W, Yao L, Wu H, et al. Multi-step validation of a deep learning-based system for the quantification of bowel preparation: a prospective, observational study [J]. Lancet Digit Health, 2021, 3(11):e697-e706. DOI: 10.1016/S2589-7500(21)00109-6.
[18] Baxter NN, Sutradhar R, Forbes SS, et al. Analysis of administrative data finds endoscopist quality measures associated with postcolonoscopy colorectal cancer [J]. Gastroenterology, 2011, 140(1): 65-72. DOI: 10.1053/j.gastro.2010.09.006.
[19] Lee TJ, Blanks RG, Rees CJ, et al. Longer mean colonoscopy withdrawal time is associated with increased adenoma detection: evidence from the Bowel Cancer Screening Programme in England [J]. Endoscopy, 2013, 45(1): 20-26. DOI: 10.1055/s-0032-1325803.
[20] Lieberman D. A call to action--measuring the quality of colonoscopy [J]. N Engl J Med, 2006, 355(24): 2588-2589. DOI: 10.1056/NEJMe068254.
[21] Wang Y, Tavanapong W, Wong JS, et al. Detection of quality visualization of appendiceal orifices using local edge cross-section profile features and near pause detection [J]. IEEE Trans Biomed Eng, 2010, 57(3):685-695. DOI: 10.1109/TBME.2009.2034466.
[22] Su JR, Li Z, Shao XJ, et al. Impact of a real-time automatic quality control system on colorectal polyp and adenoma detection: a prospective randomized controlled study (with videos) [J]. Gastrointest Endosc, 2020, 91(2): 415-424.e4. DOI: 10.1016/j.gie.2019.08.026.
[23] Urban G, Tripathi P, Alkayali T, et al. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy [J]. Gastroenterology, 2018, 155(4): 1069-1078.e8. DOI: 10.1053/j.gastro. 2018.06.037.
[24] Chen PJ, Lin MC, Lai MJ, et al. Accurate classification of diminutive colorectal polyps using computer-aided analysis [J]. Gastroenterology, 2018, 154(3):568-575. DOI: 10.1053/j.gastro.2017.10.010.
[25] Komeda Y, Handa H, Watanabe T, et al. Computer-aided diagnosis based on convolutional neural network system for colorectal polyp classification: preliminary experience [J]. Oncology, 2017, 93 Suppl 1: 30-34. DOI: 10.1159/000481227.
[26] Mori Y, Kudo SE, Misawa M, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: a prospective study [J]. Ann Intern Med, 2018, 169(6):357-366. DOI: 10.7326/M18-0249.
[27] Mori Y, Kudo SE, Mohmed HEN, et al. Artificial intelligence and upper gastrointestinal endoscopy: current status and future perspective [J]. Dig Endosc, 2019, 31(4):378-388. DOI: 10.1111/den.13317.
[28] Sánchez-Peralta LF, Bote-Curiel L, Picón A, et al. Deep learning to find colorectal polyps in colonoscopy: a systematic literature review [J]. Artif Intell Med, 2020, 108: 101923. DOI: 10.1016/j.artmed.2020.101923.
|