[1] Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography[J]. Science, 1991,
254(5035):1178-1181. DOI: 10.1126/science.1957169.
[2] Ferrara D, Waheed NK, Duker JS.
Investigating the choriocapillaris and choroidal vasculature with new optical
coherence tomography technologies[J]. Prog Retin Eye Res,2016,52:130-155. DOI:
10.1016/j.preteyeres. 2015.10.002.
[3] Laíns I, Wang JC, Cui Y, et al. Retinal
applications of swept source optical coherence tomography (OCT) and optical
coherence tomography angiography (OCTA). [J]. Prog Retin Eye
Res,2021,84:100951. DOI: 10.1016/j.preteyeres.2021.100951.
[4] Kashani AH, Chen CL, Gahm JK, et al.
Optical coherence tomography angiography: a comprehensive review of current
methods and clinical applications[J]. Prog Retin Eye Res,2017,60:66-100. DOI:
10.1016/j.preteyeres.2017.07.002.
[5] Agemy SA, Scripsema NK, Shah CM, et al.
Retinal vascular perfusion density mapping using optical coherence tomography
angiography in normals and diabetic retinopathy patients[J]. Retina,
2015,35(11):2353-2363. DOI: 10.1097/IAE.0000000000000862.
[6] Kim AY, Chu Z, Shahidzadeh A, et al.
Quantifying microvascular density and morphology in diabetic retinopathy using
spectral-domain optical coherence tomography angiography[J]. Invest Ophthalmol
Vis Sci, 2016, 57(9): OCT362-370. DOI: 10.1167/iovs.15-18904.
[7] Tan B, Sim R, Chua J, et al. Approaches
to quantify optical coherence tomography angiography metrics[J]. Ann Transl
Med,2020,8(18):1205. DOI: 10.21037/atm-20-3246.
[8] Munk MR, Giannakaki-Zimmermann H, Berger
L, et al. OCT-angiography: a qualitative and quantitative comparison of 4 OCT-A
devices[J]. PLoS One,2017,12(5):e0177059. DOI: 10.1371/journal.pone.0177059.
[9] Cheung CY, Zheng Y, Hsu W, et al.
Retinal vascular tortuosity, blood pressure, and cardiovascular risk
factors[J]. Ophthalmology,2011,118(5):812-818. DOI:
10.1016/j.ophtha.2010.08.045.
[10] Corvi F, Pellegrini M, Erba S, et al.
Reproducibility of vessel density, fractal dimension, and foveal avascular zone
using 7 different optical coherence tomography angiography devices[J]. Am J
Ophthalmol,2018,186:25-31. DOI: 10.1016/j.ajo.2017.11.011.
[11] Zahid S, Dolz-Marco R, Freund KB, et al.
Fractal dimensional analysis of optical coherence tomography angiography in
eyes with diabetic retinopathy[J]. Invest Ophthalmol Vis
Sci,2016,57(11):4940-4947. DOI: 10.1167/iovs.16-19656.
[12] Jung JJ, Chen CY, Mrejen S, et al. The
incidence of neovascular subtypes in newly diagnosed neovascular age-related
macular degeneration[J]. Am J Ophthalmol,2014,158(4):769-779.e2. DOI:
10.1016/j.ajo.2014.07.006.
[13] Freund KB, Zweifel SA, Engelbert M. Do
we need a new classification for choroidal neovascularization in age-related
macular degeneration?[J]. Retina,2010,30(9):1333-1349. DOI:
10.1097/IAE.0b013e3181e7976b.
[14] Spaide RF, Jaffe GJ, Sarraf D, et al.
Consensus nomenclature for reporting neovascular age-related macular
degeneration data: consensus on neovascular age-related macular degeneration
nomenclature study group[J]. Ophthalmology,2020,127(5):616-636. DOI:
10.1016/j.ophtha.2019.11.004.
[15] Arrigo A, Aragona E, Di Nunzio C, et al.
Quantitative optical coherence tomography angiography parameters in type 1
macular neovascularization secondary to age-related macular degeneration[J].
Transl Vis Sci Technol,2020,9(9):48. DOI: 10.1167/tvst.9.9.48.
[16] Waheed NK, Moult EM, Fujimoto JG, et al.
Optical coherence tomography angiography of dry age-related macular
degeneration[J]. Dev Ophthalmol, 2016,56:91-100. DOI: 10.1159/000442784.
[17] Sacconi R, Corbelli E, Carnevali A, et
al. Optical coherence tomography angiography in geographic atrophy[J].
Retina,2018,38(12):2350-2355. DOI: 10.1097/IAE.0000000000001873.
[18] Sacconi R, Corbelli E, Borrelli E, et
al. Choriocapillaris flow impairment could predict the enlargement of
geographic atrophy lesion[J]. Br J Ophthalmol, 2021,105(1):97-102. DOI:
10.1136/bjophthalmol- 2019- 315800.
[19] Matsunaga DR, Yi JJ, De Koo LO, et al.
Optical coherence tomography angiography of diabetic retinopathy in human
subjects[J]. Ophthalmic Surg Lasers Imaging Retina, 2015,46(8):796-805. DOI:
10.3928/23258160- 20150909-03.
[20] Nesper PL, Roberts PK, Onishi AC, et al.
Quantifying microvascular abnormalities with increasing severity of diabetic
retinopathy using optical coherence tomography angiography[J]. Invest
Ophthalmol Vis Sci, 2017,58(6): BIO307-BIO315. DOI: 10.1167/iovs.17-21787.
[21] Onishi AC, Nesper PL, Roberts PK, et al.
Importance of considering the middle capillary plexus on OCT angiography in
diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2018,59(5):2167-2176. DOI:
10.1167/iovs.17-23304.
[22] Hirano T, Kitahara J, Toriyama Y, et al.
Quantifying vascular density and morphology using different swept-source
optical coherence tomography angiographic scan patterns in diabetic
retinopathy[J]. Br J Ophthalmol, 2019,103(2):216-221. DOI:
10.1136/bjophthalmol-2018-311942.
[23] Lu Y, Simonett JM, Wang J, et al.
Evaluation of automatically quantified foveal avascular zone metrics for
diagnosis of diabetic retinopathy using optical coherence tomography
angiography[J]. Invest Ophthalmol Vis Sci, 2018,59(6):2212-2221. DOI:
10.1167/iovs.17-23498.
[24] Lei J, Yi E, Suo Y, et al. Distinctive
analysis of macular superficial capillaries and large vessels using optical
coherence tomographic angiography in healthy and diabetic eyes[J]. Invest Ophthalmol
Vis Sci, 2018,59(5):1937-1943. DOI: 10.1167/iovs.17-23676.
[25] Tan TE, Nguyen Q, Chua J, et al. Global
assessment of retinal arteriolar, venular and capillary microcirculations using
fundus photographs and optical coherence tomography angiography in diabetic
retinopathy[J]. Sci Rep, 2019,9(1):11751. DOI: 10.1038/s41598-019- 47770-9.
[26] Freiberg FJ, Pfau M, Wons J, et al.
Optical coherence tomography angiography of the foveal avascular zone in
diabetic retinopathy[J]. Graefes Arch Clin Exp Ophthalmol,
2016,254(6):1051-1058. DOI: 10.1007/s00417-015-3148-2.
[27] Bhardwaj S, Tsui E, Zahid S, et al.
Value of fractal analysis of optical coherence tomography angiography in
various stages of diabetic retinopathy[J]. Retina, 2018,38(9):1816-1823. DOI:
10.1097/IAE.0000000000001774.
[28] Chen Q, Ma Q, Wu C, et al. Macular
vascular fractal dimension in the deep capillary layer as an early indicator of
microvascular loss for retinopathy in type 2 diabetic patients[J]. Invest
Ophthalmol Vis Sci, 2017,58(9):3785-3794. DOI: 10.1167/iovs.17-21461.
[29] Ishibazawa A, De Pretto LR, Alibhai AY,
et al. Retinal nonperfusion relationship to arteries or veins observed on
widefield optical coherence tomography angiography in diabetic retinopathy[J].
Invest Ophthalmol Vis Sci, 2019,60(13):4310-4318. DOI: 10.1167/iovs.19-26653.
[30] 张春侠. 近视性黄斑病变黄斑形态学特征和微循环与功能的相关性研究[D].济南:山东大学,2019.
[31] Li M, Yang Y, Jiang H, et al. Retinal
microvascular network and microcirculation assessments in high myopia[J]. Am J
Ophthalmol, 2017,174:56-67. DOI: 10.1016/j.ajo.2016.10.018.
[32] Ye J, Wang M, Shen M, et al. Deep
retinal capillary plexus decreasing correlated with the outer retinal layer
alteration and visual acuity impairment in pathological myopia[J]. Invest
Ophthalmol Vis Sci, 2020,61(4):45. DOI: 10.1167/iovs.61.4.45.
[33] Khan MH, Lam AKC, Armitage JA, et al.
Impact of axial eye size on retinal microvasculature density in the macular
region[J]. J Clin Med, 2020,9(8): 2539. DOI: 10.3390/jcm9082539.
|