[1] Zhu J,
Yamane H, Paul WE. Differentiation of effector CD4 T cell populations[J].
Annual Review of Immunology, 2010, 28(1):445-489.DOI: 10.1146/annurev- immunol-
030409-101212.
[2] Yang XO, Pappu BP, Nurieva R, et al. T
helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR
alpha and ROR gamma[J]. Immunity, 2008,28(1):29-39. DOI:
10.1016/j.immuni.2007.11.016.
[3] Zhou L, Lopes JE, Chong MM, et al.
TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing
RORgammat function[J]. Nature, 2008,453(7192):236-240. DOI:
10.1038/nature06878.
[4] Long D, Chen Y, Wu H, et al. Clinical
significance and immunobiology of IL-21 in autoimmunity[J]. J Autoimmun,
2019,99:1-14. DOI: 10.1016/j.jaut.2019. 01.013.
[5] Niu W, Xu Y, Zha X, et al. IL-21/IL-21R
signaling aggravated respiratory inflammation induced by intracellular bacteria
through regulation of CD4+ T cell subset responses[J]. J Immunol,
2021,206(7):1586-1596. DOI: 10.4049/jimmunol.2001107.
[6] Yu N, Li X, Song W, et al. CD4(+)CD25
(+)CD127 (low/-) T cells: a more specific Treg population in human peripheral
blood[J]. Inflammation, 2012,35(6):1773-1780. DOI: 10.1007/s10753-012-9496-8.
[7] Shevach EM, Thornton AM. tTregs, pTregs,
and iTregs: similarities and differences[J]. Immunol Rev, 2014,259(1):88-102.
DOI: 10.1111/imr.12160.
[8] Kimura A, Kishimoto T. IL-6: regulator
of Treg/Th17 balance[J]. Eur J Immunol, 2010,40(7):1830-1835. DOI:
10.1002/eji.201040391.
[9] Takeuchi Y, Hirota K, Sakaguchi S.
Impaired T cell receptor signaling and development of T cell-mediated
autoimmune arthritis[J]. Immunol Rev, 2020,294(1):164-176. DOI:
10.1111/imr.12841.
[10] Cluxton D, Petrasca A, Moran B, et al.
Differential regulation of human Treg and Th17 cells by fatty acid synthesis
and glycolysis[J]. Front Immunol, 2019,10:115. DOI: 10.3389/fimmu.2019.00115.
[11] Westfall S, Caracci F, Zhao D, et al.
Microbiota metabolites modulate the T helper 17 to regulatory T cell
(Th17/Treg) imbalance promoting resilience to stress-induced anxiety- and
depressive-like behaviors[J]. Brain Behav Immun, 2021,91:350-368. DOI:
10.1016/j.bbi.2020. 10.013.
[12] Paradowska-Gorycka A, Wajda A,
Romanowska- Próchnicka K, et al. Th17/Treg-related transcriptional factor
expression and cytokine profile in patients with rheumatoid arthritis[J]. Front
Immunol, 2020,11:572858. DOI: 10.3389/fimmu.2020.572858.
[13] Yan JB, Luo MM, Chen ZY, et al. The
function and role of the Th17/Treg cell balance in inflammatory bowel
disease[J]. J Immunol Res, 2020,2020:8813558. DOI: 10.1155/2020/8813558.
[14] Yuliasih Y, Rahmawati LD, Putri RM.
Th17/Treg ratio and disease activity in systemic lupus erythematosus[J].
Caspian J Intern Med, 2019,10(1):65-72. DOI: 10.22088/cjim.10.1.65.
[15] 吕蒙,沈洁,李章芳,等.Treg/Th17细胞及相关细胞因子在Graves眼病中的作用及机制[J].南方医科大学学报,2014,34(12):1809-1813.DOI:10.3969/j.issn.1673-4254. 2014.12.21.
[16] Rodríguez-Muñoz A, Martínez-Hernández R,
Ramos-Leví AM, et al. Circulating microvesicles regulate Treg and Th17
differentiation in human autoimmune thyroid disorders[J]. J Clin Endocrinol
Metab, 2015,100(12):E1531-1539. DOI: 10.1210/jc.2015-3146.
[17] Li C, Yuan J, Zhu YF, et al. Imbalance
of Th17/Treg in different subtypes of autoimmune thyroid diseases[J]. Cell
Physiol Biochem, 2016,40(1-2):245-252. DOI: 10.1159/000452541.
[18] Li D, Guo B, Wu H, et al. TET family of
dioxygenases: crucial roles and underlying mechanisms[J]. Cytogenet Genome Res,
2015,146(3):171-180. DOI: 10.1159/000438853.
[19] Tian YP, Zhu YM, Sun XH, et al. Multiple
functions of ten-eleven translocation 1 during tumorigenesis[J]. Chin Med J
(Engl), 2016,129(14):1744-1751. DOI: 10.4103/0366-6999.185873.
[20] Sun F, Abreu-Rodriguez I, Ye S, et al.
TET1 is an important transcriptional activator of TNFα expression in
macrophages[J]. PLoS One, 2019,14(6):e0218551. DOI:
10.1371/journal.pone.0218551.
[21] Kunimoto H, Nakajima H. TET2: a
cornerstone in normal and malignant hematopoiesis[J]. Cancer Sci,
2021,112(1):31-40. DOI: 10.1111/cas.14688.
[22] Cong B, Zhang Q, Cao X. The function and
regulation of TET2 in innate immunity and inflammation[J]. Protein Cell,
2021,12(3):165-173. DOI: 10.1007/s13238-020- 00796-6.
[23] Montagner S, Leoni C, Emming S, et al.
TET2 regulates mast cell differentiation and proliferation through catalytic
and non-catalytic activities[J]. Cell Rep, 2016,15(7):1566-1579. DOI:
10.1016/j.celrep.2016.04.044.
[24] Lio CW, Zhang J, González-Avalos E, et
al. Tet2 and Tet3 cooperate with B-lineage transcription factors to regulate
DNA modification and chromatin accessibility[J]. Elife, 2016,5:e18290. DOI:
10.7554/eLife.18290.
[25] Ichiyama K, Chen T, Wang X, et al. The
methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of
cytokine gene expression in T cells[J]. Immunity, 2015,42(4):613-626. DOI:
10.1016/j.immuni. 2015.03.005.
[26] Hori S, Nomura T, Sakaguchi S. Control
of regulatory T cell development by the transcription factor Foxp3[J]. Science,
2003,299(5609):1057-1061. DOI: 10.1126/science.1079490.
[27] Korn T, Muschaweckh A. Stability and
maintenance of Foxp3+ treg cells in non-lymphoid microenvironments[J]. Front
Immunol, 2019,10:2634. DOI: 10.3389/fimmu. 2019. 02634.
[28] Deng G, Song X, Fujimoto S, et al. Foxp3
post-translational modifications and treg suppressive activity[J]. Front
Immunol, 2019,10:2486. DOI: 10.3389/fimmu.2019. 02486.
[29] Zheng Y, Josefowicz S, Chaudhry A, et
al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory
T-cell fate[J]. Nature, 2010,463(7282):808-812. DOI: 10.1038/nature08750.
[30] Ohkura N, Hamaguchi M, Morikawa H, et
al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression
are independent and complementary events required for Treg cell development[J].
Immunity, 2012,37(5):785-799. DOI: 10.1016/j.immuni.2012. 09.010.
[31] Nakatsukasa H, Oda M, Yin J, et al. Loss
of TET proteins in regulatory T cells promotes abnormal proliferation, Foxp3
destabilization and IL-17 expression[J]. Int Immunol, 2019,31(5):335-347. DOI:
10.1093/intimm/dxz008.
[32] Yue X, Lio CJ, Samaniego-Castruita D, et
al. Loss of TET2 and TET3 in regulatory T cells unleashes effector function[J].
Nat Commun, 2019,10(1):2011. DOI: 10.1038/s41467-019-09541-y.
[33] Yang R, Qu C, Zhou Y, et al. Hydrogen
sulfide promotes Tet1- and tet2-mediated Foxp3 demethylation to drive
regulatory T cell differentiation and maintain immune homeostasis[J]. Immunity,
2015,43(2):251-263. DOI: 10.1016/j.immuni.2015.07.017.
[34] Someya K, Nakatsukasa H, Ito M, et al.
Improvement of Foxp3 stability through CNS2 demethylation by TET enzyme
induction and activation[J]. Int Immunol, 2017,29(8):365-375. DOI:
10.1093/intimm/dxx049.
[35] Yue X, Trifari S, Äijö T, et al. Control
of Foxp3 stability through modulation of TET activity[J]. J Exp Med,
2016,213(3):377-397. DOI: 10.1084/jem.20151438.
[36] Sasidharan Nair V, Song MH, Oh KI.
Vitamin C facilitates demethylation of the Foxp3 enhancer in a Tet-dependent manner[J].
J Immunol, 2016,196(5):2119-2131. DOI: 10.4049/jimmunol.1502352.
|