[1] 姚宝乐, 朱晓娟, 温望文, 等. TCF7L2及经典Wnt信号通路在肝癌中作用的研究进展[J]. 国际医药卫生导报, 2023, 29(2): 149-153. DOI: 10.3760/cma.j.issn.1007-1245.2023.02.001.
[2] 王琪.靶向代谢重编程改善肝细胞癌耐药的策略及其机制研究[D].长春:吉林大学,2024.DOI:10.27162/d.cnki.gjlin.2024.000464.
[3] DeWaal D, Nogueira V, Terry AR, et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin[J]. Nat Commun, 2018,9(1):446. DOI: 10.1038/s41467-017-02733-4.
[4] 刘伟,申昌军,朱帅,等.己糖激酶-2的表达对肝癌根治术后患者的预后意义[J].河北医药,2019,41(1):28-32.DOI:10.3969/j.issn.1002-7386.2019.01.006.
[5] Feng J, Li J, Wu L, et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2020, 39(1):126. DOI: 10.1186/s13046-020-01629-4.
[6] Ciscato F, Ferrone L, Masgras I, et al. Hexokinase 2 in cancer: a prima donna playing multiple characters[J]. Int J Mol Sci, 2021,22(9):4716. DOI: 10.3390/ijms22094716.
[7] Mathupala SP, Ko YH, Pedersen PL. Hexokinase Ⅱ: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria [J]. Oncogene, 2006, 25(34): 4777-4786.DOI: 10.1038/sj.onc.1209603.
[8] Wang L, Yang Q, Peng S, et al. The combination of the glycolysis inhibitor 2-DG and sorafenib can be effective against sorafenib-tolerant persister cancer cells[J]. Onco Targets Ther, 2019, 12:5359-5373. DOI: 10.2147/OTT.S212465.
[9] Xu S, Herschman HR. A tumor agnostic therapeutic strategy for hexokinase 1-null/hexokinase 2-positive cancers[J]. Cancer Res, 2019, 79(23):5907-5914. DOI: 10.1158/0008-5472.CAN-19-1789.
[10] Czaja MJ, Ding WX, Donohue TM, et al. Functions of autophagy in normal and diseased liver [J]. Autophagy, 2014, 9(8): 1131-1158. DOI: 10.4161/auto.25063.
[11] Jiao L, Zhang HL, Li DD, et al. Regulation of glycolytic metabolism by autophagy in liver cancer involves selective autophagic degradation of HK2 (hexokinase 2) [J]. Autophagy, 2017, 14(4): 671-684. DOI: 10.1080/15548627.2017.1381804.
[12] Jin F, Wang Y, Zhu Y, et al. The miR-125a/HK2 axis regulates cancer cell energy metabolism reprogramming in hepatocellular carcinoma [J]. Sci Rep, 2017, 7(1):3089. DOI: 10.1038/s41598-017-03407-3.
[13] Ding Z, Guo L, Deng Z, et al. Circ-PRMT5 enhances the proliferation, migration and glycolysis of hepatoma cells by targeting miR-188-5p/HK2 axis [J]. Ann Hepatol, 2020, 19(3): 269-279. DOI: 10.1016/j.aohep.2020.01.002.
[14] Makino Y, Hikita H, Kato S, et al. STAT3 is activated by CTGF-mediated tumor-stroma cross talk to promote HCC progression [J]. Cell Mol Gastroenterol Hepatol, 2023, 15(1): 99-119. DOI: 10.1016/j.jcmgh.2022.09.006.
[15] Li Y, Song Z, Han Q, et al. Targeted inhibition of STAT3 induces immunogenic cell death of hepatocellular carcinoma cells via glycolysis [J]. Mol Oncol, 2022, 16(15): 2861-2880. DOI: 10.1002/1878-0261.13263.
[16] Guo W, Qiu Z, Wang Z, et al. MiR‐199a‐5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer [J]. Hepatology, 2015, 62(4): 1132-1144. DOI: 10.1002/hep.27929.
[17] Zhang T, Zhu X, Wu H, et al. Targeting the ROS/PI3K/AKT/HIF‐1α/HK2 axis of breast cancer cells: combined administration of polydatin and 2‐deoxy‐d‐glucose [J]. J Cell Mol Med, 2019, 23(5): 3711-3723. DOI: 10.1111/jcmm.14276.
[18] Lee HG, Kim H, Son T, et al. Regulation of HK2 expression through alterations in CpG methylation of the HK2 promoter during progression of hepatocellular carcinoma[J]. Oncotarget, 2016, 7(27): 41798-41810. DOI: 10.18632/oncotarget.9723.
[19] Sun Z, Tan Z, Peng C, et al. HK2 is associated with the Warburg effect and proliferation in liver cancer: targets for effective therapy with glycyrrhizin [J]. Mol Med Rep, 2021, 23(5):343. DOI: 10.3892/mmr.2021.11982.
[20] Ciscato F, Filadi R, Masgras I, et al. Hexokinase 2 displacement from mitochondria‐associated membranes prompts Ca2+‐dependent death of cancer cells [J]. EMBO Rep, 2020, 21(7): e49117. DOI: 10.15252/embr.201949117.
[21] Kim W, Yoon JH, Jeong JM, et al. Apoptosis-inducing antitumor efficacy of hexokinase Ⅱ inhibitor in hepatocellular carcinoma [J]. Mol Cancer Ther, 2007, 6(9): 2554-2562. DOI: 10.1158/1535-7163.Mct-07-0115.
[22] Zhu Z, Jiang W, McGinley JN, et al. 2-Deoxyglucose as an energy restriction mimetic agent: effects on mammary carcinogenesis and on mammary tumor cell growth in vitro[J]. Cancer Res, 2005, 65(15): 7023-7030. DOI: 10.1158/0008-5472.CAN-05-0453.
[23] Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy[J]. Pharmacol Res, 2019, 150:104511. DOI: 10.1016/j.phrs.2019.104511.
[24] Meng YM, Jiang X, Zhao X, et al. Hexokinase 2-driven glycolysis in pericytes activates their contractility leading to tumor blood vessel abnormalities[J]. Nat Commun, 2021, 12(1):6011. DOI: 10.1038/s41467-021-26259-y.
[25] Garcia SN, Guedes RC, Marques MM. Unlocking the potential of HK2 in cancer metabolism and therapeutics[J]. Curr Med Chem, 2019, 26(41):7285-7322. DOI: 10.2174/0929867326666181213092652.
[26] Yoo JJ, Yu SJ, Na J, et al. Hexokinase-Ⅱ inhibition synergistically augments the anti-tumor efficacy of sorafenib in hepatocellular carcinoma [J]. Int J Mol Sci, 2019, 20(6):1292. DOI: 10.3390/ijms20061292.
|