国际医药卫生导报 ›› 2022, Vol. 28 ›› Issue (20): 2813-2821.DOI: 10.3760/cma.j.issn.1007-1245.2022.20.001
• 科研课题专栏 • 下一篇
林红丽1 卢晓庆1 李有杰2 孙允霄1
收稿日期:
2022-06-01
出版日期:
2022-10-15
发布日期:
2022-10-14
通讯作者:
孙允霄,Email:sunyunxiao1979@163.com
基金资助:
国家自然科学基金(81800169);
山东省青创科技支持计划(2019KJK014);
滨州医学院“临床+X”项目(BY2021LCX04)
Lin Hongli1, Lu Xiaoqing1, Li Youjie2, Sun Yunxiao1
Received:
2022-06-01
Online:
2022-10-15
Published:
2022-10-14
Contact:
Sun Yunxiao, Email: sunyunxiao1979@163.com
Supported by:
National Natural Science Foundation of China (81800169);
Shandong Qingchuang Technology Support Plan (2019KJK014);
"Clinical + X" Project of Binzhou Medical University (BY2021LCX04)
摘要: 目的 探讨长链非编码RNA(lncRNA)异常表达对急性髓系白血病(AML)预后的影响。方法 检索PubMed、Embase、Cochrane数据库截止2021年10月6日前发表的所有相关文献。结果 最终纳入13项研究,共1 591人。lncRNA异常表达与AML患者,尤其是与非-急性早幼粒细胞白血病[AML(non-M3)]患者的总体生存率(OS)降低有关,并与无复发生存率(RFS)降低有关。亚组分析显示HOX转录反义基因间RNA(HOTAIR)和牛磺酸上调基因1(TUG1)的高表达与较差的OS相关。结论 lncRNA的异常表达与AML患者不良预后显著相关,其异常表达是AML患者预后不良的危险因素,可以作为预测AML患者预后的生物标志物。
林红丽 卢晓庆 李有杰 孙允霄. 长链非编码RNA异常表达对急性髓系白血病预后影响的meta分析[J]. 国际医药卫生导报, 2022, 28(20): 2813-2821.
Lin Hongli, Lu Xiaoqing, Li Youjie, Sun Yunxiao. Meta analysis of the effect of abnormal expression of long noncoding RNA on the prognosis of acute myeloid leukemia[J]. International Medicine and Health Guidance News, 2022, 28(20): 2813-2821.
[1] Yamamoto JF, Goodman MT. Patterns of leukemia incidence in the United States by subtype and demographic characteristics, 1997-2002[J]. Cancer Causes Control, 2008, 19(4): 379-390. DOI: 10.1007/s10552-007-9097-2. [2] Gamis AS, Alonzo TA, Perentesis JP, et al. Children's Oncology Group's 2013 blueprint for research: acute myeloid leukemia[J]. Pediatr Blood Cancer, 2013, 60(6): 964-971. DOI: 10.1002/pbc.24432. [3] Arber DA. Acute Myeloid leukemia - sciencedirect[J]. Hematopathology (Third Edition), 2018: 429-466. DOI: 10.1016/b978-0-7216-0040-6.00045-9. [4] Newell LF, Cook RJ. Advances in acute myeloid leukemia[J]. BMJ, 2021,375: n2026. DOI: 10.1136/bmj.n2026. [5] Fleischmann M, Schnetzke U, Hochhaus A, et al. Management of acute myeloid leukemia: current treatment options and future perspectives[J] .Cancers (Basel), 2021, 13(22): 5722. DOI: 10.3390/cancers13225722. [6] Loke J, Malladi R, Moss P, et al. The role of allogeneic stem cell transplantation in the management of acute myeloid leukaemia: a triumph of hope and experience[J] .Br J Haematol, 2020, 188(1): 129-146. DOI: 10.1111/bjh.16355. [7] Smolarz B, Zadrożna-Nowak A, Romanowicz H. The role of lncRNA in the development of tumors, including breast cancer[J]. Int J Mol Sci, 2021, 22(16): 8427. DOI: 10.3390/ijms22168427. [8] Kazimierczyk M, Wrzesinski J. Long non-coding RNA epigenetics[J]. Int J Mol Sci, 2021, 22(11): 6166. DOI: 10.3390/ijms22116166. [9] Bernstein E, Allis CD. RNA meets chromatin[J]. Genes Dev, 2005, 19(14): 1635-1655. DOI: 10.1101/gad.1324305. [10] Farhan M, Aatif M, Dandawate P, et al. Non-coding RNAs as mediators of tamoxifen resistance in breast cancers[J]. Adv Exp Med Biol, 2019, 1152: 229-241. DOI: 10.1007/978-3-030-20301-6_11. [11] Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function[J]. Nat Rev Genet, 2016, 17(1): 47-62. DOI: 10.1038/nrg.2015.10. [12] Wang F, Tian X, Zhou J, et al. A three-lncRNA signature for prognosis prediction of acutemyeloid leukemia in patients[J]. Mol Med Rep, 2018, 18(2): 1473-1484. DOI: 10.3892/mmr.2018.9139. [13] Gagliardi S, Pandini C, Garofalo M, et al. Long non coding RNAs and ALS: still much to do[J]. Noncoding RNA Res, 2018, 3(4):226-231. DOI: 10.1016/j.ncrna.2018.11.004. [14] Zhang X, Hong R, Chen W, et al. The role of long noncoding RNA in major human disease[J] .Bioorg Chem, 2019, 92: 103214. DOI: 10.1016/j.bioorg.2019.103214. [15] Adams BD, Parsons C, Walker L, et al. Targeting noncoding RNAs in disease[J]. J Clin Invest, 2017, 127(3):761-771. DOI: 10.1172/JCI84424. [16] Li J, Sun CK. Long noncoding RNA SNHG5 is up-regulated and serves as a potential prognostic biomarker in acute myeloid leukemia[J].Eur Rev Med Pharmacol Sci, 2018, 22(11):3342-3347. DOI: 10.26355/eurrev_201806_15154. [17] Shi J, Ding W, Lu H. Identification of long Non-Coding RNA SNHG family as promising prognostic biomarkers in acute myeloid leukemia[J]. Onco Targets Ther, 2020, 13: 8441-8450. DOI: 10.2147/OTT.S265853. [18] Wu S, Zheng C, Chen S, et al. Overexpression of long non-coding RNA HOTAIR predicts a poor prognosis in patients with acute myeloid leukemia[J]. Oncol lett, 2015, 10(4):2410-2414. DOI: 10.3892/ol.2015.3552. [19] Zhang YY, Huang SH, Zhou HR, et al. Role of HOTAIR in the diagnosis and prognosis of acute leukemia[J]. Oncol Rep, 2016, 36(6): 3113-3122. DOI: 10.3892/or.2016.5147. [20] Luo W, Yu H, Zou X, et al. Long non-coding RNA taurine-upregulated gene 1 correlates with unfavorable prognosis in patients with refractory or relapsed acute myeloid leukemia treated by purine analogue based chemotherapy regimens[J]. Cancer Biomark, 2018, 23(4):485-494. DOI: 10.3233/CBM-181405. [21] Wang X, Zhang L, Zhao F, et al. Long non-coding RNA taurine-upregulated gene 1 correlates with poor prognosis, induces cell proliferation, and represses cell apoptosis via targeting aurora kinase A in adult acute myeloid leukemia[J]. Ann Hematol, 2018, 97(8):1375-1389. DOI: 10.1007/s00277-018-3315-8. [22] Qu Y, Wang Y, Wang P, et al. Overexpression of long noncoding RNA HOXA-AS2 predicts an adverse prognosis and promotes tumorigenesis via SOX4/PI3K/AKT pathway in acute myeloid leukemia[J]. Cell Biol Int, 2020, 44(8): 1745-1759. DOI: 10.1002/cbin.11370. [23] Shi X, Li J, Ma L, et al. Overexpression of ZEB2-AS1 lncRNA is associated with poor clinical outcomes in acute myeloid leukemia[J]. Oncol Lett, 2019, 17(6): 4935-4947. DOI: 10.3892/ol.2019.10149. [24] Yang L, Zhou JD, Zhang TJ, et al. Overexpression of lncRNA PANDAR predicts adverse prognosis in acute myeloid leukemia[J]. Cancer Manag Res, 2018, 10: 4999-5007. DOI: 10.2147/CMAR.S180150. [25] He C, Wang X, Luo J, et al. Long Noncoding RNA maternally expressed gene 3 is downregulated, and its insufficiency correlates with poor-risk stratification, worse treatment response, as well as unfavorable survival data in patients with acute myeloid leukemia[J]. Technol Cancer Res Treat, 2020, 19: 1533033820945815. DOI: 10.1177/1533033820945815. [26] Huang JL, Liu W, Tian LH, et al. Upregulation of long non-coding RNA MALAT-1 confers poor prognosis and influences cell proliferation and apoptosis in acute monocytic leukemia[J]. Oncol Rep, 2017, 38(3):1353-1362. DOI: 10.3892/or.2017.5802. [27] Yan H, Zhang DY, Li X, et al. Long non-coding RNA GAS5 polymorphism predicts a poor prognosis of acute myeloid leukemia in Chinese patients via affecting hematopoietic reconstitution[J]. Leuk Lymphoma, 2017, 58(8):1948-1957. DOI: 10.1080/10428194.2016.1266626. [28] Pashaiefar H, Izadifard M, Yaghmaie M, et al. Low expression of long noncoding RNA IRAIN is associated with poor prognosis in non-M3 acute myeloid leukemia patients[J]. Genet Test Mol Biomarkers, 2018, 22(5): 288-294. DOI: 10.1089/gtmb.2017.0281. [29] Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary time-to-event data into meta-analysis[J]. Trials, 2007, 8: 16. DOI: 10.1186/1745-6215-8-16. [30] Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses[J]. Eur J Epidemiol, 2010, 25(9):603-605. DOI: 10.1007/s10654-010-9491-z. [31] Gottardi M, Simonetti G, Sperotto A, et al. Therapeutic targeting of acute myeloid leukemia by gemtuzumab ozogamicin[J]. Cancers (Basel), 2021, 13(18): 4566. DOI: 10.3390/cancers13184566. [32] Thol F, Heuser M. Treatment for relapsed/refractory acute myeloid leukemia[J]. Hemasphere, 2021, 5(6): e572. DOI: 10.1097/HS9.0000000000000572. [33] Schlenk RF, Frech P, Weber D, et al. Impact of pretreatment characteristics and salvage strategy on outcome in patients with relapsed acute myeloid leukemia[J]. Leukemia, 2017, 31(5): 1217-1220. DOI: 10.1038/leu.2017.22. [34] Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function[J]. Genome Biol, 2017, 18(1): 206. DOI: 10.1186/s13059-017-1348-2. [35] Jarroux J, Morillon A, Pinskaya M. History, discovery, and classification of lncRNAs[J]. Adv Exp Med Biol, 2017, 1008: 1-46. DOI: 10.1007/978-981-10-5203-3_1. [36] Sarfi M, Abbastabar M, Khalili E. Long noncoding RNAs biomarker-based cancer assessment[J]. J Cell Physiol, 2019, 234(10): 16971-16986. DOI: 10.1002/jcp.28417. [37] Zhang Y, Zhang L, Wang Y, et al. MicroRNAs or long noncoding RNAs in diagnosis and prognosis of coronary artery disease[J]. Aging Dis, 2019, 10(2): 353-366. DOI: 10.14336/AD.2018.0617. [38] Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals[J]. Nature, 2009, 458(7235): 223-227. DOI: 10.1038/nature07672. [39] Hirano T, Yoshikawa R, Harada H, et al. Long noncoding RNA, CCDC26, controls myeloid leukemia cell growth through regulation of KIT expression[J]. Mol Cancer, 2015, 14: 90. DOI: 10.1186/s12943-015-0364-7. [40] Wang Y, Zhou Q, Ma JJ. High expression of lnc-CRNDE presents as a biomarker for acute myeloid leukemia and promotes the malignant progression in acute myeloid leukemia cell line U937[J]. Eur Rev Med Pharmacol Sci, 2018, 22(3): 763-770. DOI: 10.26355/eurrev_201802_14310. [41] Huarte M. The emerging role of lncRNAs in cancer[J]. Nat Med, 2015, 21(11): 1253-1261. DOI: 10.1038/nm.3981. [42] Mark M, Rijli FM, Chambon P. Homeobox genes in embryogenesis and pathogenesis[J]. Pediatr Res, 1997, 42(4): 421-429. DOI: 10.1203/00006450-199710000- 00001. [43] Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010, 464(7291): 1071-1076. DOI: 10.1038/nature08975. [44] Wan Y, Chang HY. HOTAIR: flight of noncoding RNAs in cancer metastasis[J]. Cell Cycle, 2010, 9(17): 3391-3392. DOI: 10.4161/cc.9.17.13122. [45] Hao S, Shao Z. HOTAIR is upregulated in acute myeloid leukemia and that indicates a poor prognosis[J]. Int J Clin Exp Pathol, 2015, 8(6):7223-7228. [46] Qin J, Bao H, Li H. Correlation of long non-coding RNA taurine-upregulated gene 1 with disease conditions and prognosis, as well as its effect on cell activities in acute myeloid leukemia[J].Cancer Biomark, 2018, 23(4): 569-577. DOI: 10.3233/CBM-181834. [47] Ghaforui-Fard S, Vafaee R, Taheri M. Taurine-upregulated gene 1: a functional long noncoding RNA in tumorigenesis[J]. J Cell Physiol, 2019, 234(10): 17100-17112. DOI: 10.1002/jcp.28464. [48] Li HY, Xing C, Zhou B, et al. A regulatory circuitry between miR-193a/miR-600 and WT1 enhances leukemogenesis in acute myeloid leukemia[J]. Exp Hematol, 2018, 61: 59-68, e5. DOI: 10.1016/j.exphem.2018.02.001. [49] Zhang R, Tang P, Wang F, et al. Tumor suppressor miR-139-5p targets Tspan3 and regulates the progression of acute myeloid leukemia through the PI3K/Akt pathway[J]. J Cell Biochem, 2019, 120(3): 4423-4432. DOI: 10.1002/jcb.27728. [50] Li Q, Wang J. LncRNA TUG1 regulates cell viability and death by regulating miR-193a-5p/Rab10 axis in acute myeloid leukemia[J]. Onco Targets Ther, 2020, 13: 1289-1301. DOI: 10.2147/OTT.S234935. eCollection 2020. [51] Hu T, Fei Z, Su H, et al. Polydatin inhibits proliferation and promotes apoptosis of doxorubicin-resistant osteosarcoma through LncRNA TUG1 mediated suppression of Akt signaling[J]. Toxicol Appl Pharmacol, 2019, 371: 55-62. DOI: 10.1016/j.taap.2019.04.005. [52] Niu Y, Ma F, Huang W, et al. Long non-coding RNA TUG1 is involved in cell growth and chemoresistance of small cell lung cancer by regulating LIMK2b via EZH2[J]. Mol Cancer, 2017, 16(1): 5. DOI: 10.1186/s12943-016-0575-6. [53] Li Q, Song W, Wang J. TUG1 confers Adriamycin resistance in acute myeloid leukemia by epigenetically suppressing miR-34a expression via EZH2[J]. Biomed Pharmacother, 2019, 109: 1793-1801. DOI: 10.1016/j.biopha.2018. 11.003. [54] Tanaka R, Satoh H, Moriyama M, et al. Intronic U50 small-nucleolar-RNA (snoRNA) host gene of no protein-coding potential is mapped at the chromosome breakpoint t(3;6)(q27;q15) of human B-cell lymphoma[J]. Genes Cells, 2000, 5(4): 277-287. DOI: 10.1046/j.1365-2443.2000.00325.x. [55] Zhao L, Guo H, Zhou B, et al. Long non-coding RNA SNHG5 suppresses gastric cancer progression by trapping MTA2 in the cytosol[J]. Oncogene, 2016, 35(44): 5770-5780. DOI: 10.1038/onc.2016.110. [56] Wang D, Zeng T, Lin Z, et al. Long non-coding RNA SNHG5 regulates chemotherapy resistance through the miR-32/DNAJB9 axis in acute myeloid leukemia[J]. Biomed Pharmacother, 2020, 123: 109802. DOI: 10.1016/j.biopha.2019.109802. |
[1] | 姜敏, 赵玉军. ATP6V1C1在肝细胞癌中的表达及功能研究[J]. 国际医药卫生导报, 2022, 28(9): 1270-1276. |
[2] | 张桂江, 孙斌. 腹腔镜超声于肝癌腹腔镜切除术中的应用及对患者的影响[J]. 国际医药卫生导报, 2022, 28(9): 1277-1282. |
[3] | 张娜, 魏伟, 许新科, 陈程, 孙贵芳, 谭永红. 儿童脑肿瘤切除术中大出血的危险因素分析[J]. 国际医药卫生导报, 2022, 28(8): 1099-1103. |
[4] | 任冲, 陈楠, 陈宁. 中性粒细胞胞外诱捕网水平在脓毒症患儿病情评估中的临床应用价值[J]. 国际医药卫生导报, 2022, 28(6): 808-811. |
[5] | 刘慧轩, 何雅军. 血清胸苷激酶1对甲状腺癌诊断价值的meta分析[J]. 国际医药卫生导报, 2022, 28(3): 357-360. |
[6] | 李丽, 贾利清. 慢性心力衰竭患者H-FABP、salusin-β水平与疾病严重程度及预后的关系[J]. 国际医药卫生导报, 2022, 28(3): 390-394. |
[7] | 胡卫, 刘良进. 多模式CT检查评价缺血性脑卒中患者缺血半暗带、侧支循环与预后的关系 [J]. 国际医药卫生导报, 2022, 28(3): 394-398. |
[8] | 于文龙, 殷晓伟, 杨玉柱, 许艳梅. 巨大乳腺腺鳞癌1例并文献复习[J]. 国际医药卫生导报, 2022, 28(3): 419-421. |
[9] | 丁声双 黄伟华 段蓉蓉 逯晓婷 张杰 秦晓宇 薛建军. 经皮穴位电刺激对剖宫产产妇术后胃肠功能恢复影响的meta分析[J]. 国际医药卫生导报, 2022, 28(21): 3014-3019. |
[10] | 袁法伟 郑鲲. 血清总胆红素、D-二聚体及IL-6在老年脓毒症患者病情及预后评估中的价值分析[J]. 国际医药卫生导报, 2022, 28(20): 2924-2928. |
[11] | 潘春柳, 黄志华. ICU医用粘胶相关性皮肤损伤患者相关因素的meta分析[J]. 国际医药卫生导报, 2022, 28(2): 270-277. |
[12] | 刘效锋 邵碧波. 长链非编码RNA MYCNOS预测脓毒症合并急性心力衰竭患者发生主要不良心血管事件的价值研究[J]. 国际医药卫生导报, 2022, 28(18): 2528-2533. |
[13] | 赵柳燕 宋守君 薛海波. 分子靶向药物治疗难治性甲状腺癌的疗效及安全性的meta分析[J]. 国际医药卫生导报, 2022, 28(17): 2369-2376. |
[14] | 王凤燕 侯健 张道强 宫琪 刘传杰 韩志浩. 恶性梗阻性黄疸患者PTCD术后发生胆系感染的危险因素[J]. 国际医药卫生导报, 2022, 28(17): 2377-2382. |
[15] | 赖呈哲. 急性心力衰竭患者血清cTnI、NT-proBNP、尿酸水平与预后的关系分析[J]. 国际医药卫生导报, 2022, 28(17): 2465-2470. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||