[1] Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development[J]. Science, 1999, 284(5415):770-776. DOI: 10.1126/science.284.5415.770.
[2] 杨曦,陈鹏,蒋霞,等.昆虫Notch信号通路研究进展[J].昆虫学报,2021,64(2):250-258. DOI:10.16380/j.kcxb.2021. 02.012.
[3] Morrow D, Scheller A, Birney YA, et al. Notch-mediated CBF-1/RBP-J{kappa}-dependent regulation of human vascular smooth muscle cell phenotype in vitro[J]. Am J Physiol Cell Physiol, 2005, 289(5):C1188-C1196. DOI: 10.1152/ajpcell.00198.2005.
[4] Aquila G, Kostina A, Vieceli Dalla Sega F, et al. The Notch pathway: a novel therapeutic target for cardiovascular diseases?[J]. Expert Opin Ther Targets, 2019, 23(8):695-710. DOI: 10.1080/14728222.2019.1641198.
[5] Mu X, Agarwal R, March D, et al. Notch signaling mediates skeletal muscle atrophy in cancer cachexia caused by osteosarcoma[J]. Sarcoma, 2016, 2016:3758162. DOI: 10.1155/2016/3758162.
[6] Wang Y, Wu B, Lu P, et al. Uncontrolled angiogenic precursor expansion causes coronary artery anomalies in mice lacking Pofut1[J]. Nat Commun, 2017, 8(1):578. DOI: 10.1038/s41467-017-00654-w.
[7] D'Amato G, Luxán G, del Monte-Nieto G, et al. Sequential Notch activation regulates ventricular chamber development[J]. Nat Cell Biol, 2016, 18(1):7-20. DOI: 10.1038/ncb3280.
[8] Alabi RO, Glomski K, Haxaire C, et al. ADAM10-dependent signaling through Notch1 and Notch4 controls development of organ-specific vascular beds[J]. Circ Res, 2016, 119(4):519-531. DOI: 10.1161/CIRCRESAHA.115. 307738.
[9] Luxán G, D'Amato G, MacGrogan D, et al. Endocardial Notch signaling in cardiac development and disease[J]. Circ Res, 2016, 118(1):e1-e18. DOI: 10.1161/CIRCRESAHA.115.305350.
[10] MacGrogan D, Münch J, de la Pompa JL. Notch and interacting signalling pathways in cardiac development, disease, and regeneration[J]. Nat Rev Cardiol, 2018, 15(11):685-704. DOI: 10.1038/s41569-018-0100-2.
[11] Farber G, Parks MM, Lustgarten Guahmich N, et al. ADAM10 controls the differentiation of the coronary arterial endothelium[J]. Angiogenesis, 2019, 22(2):237-250. DOI: 10.1007/s10456-018-9653-2.
[12] Øie E, Sandberg WJ, Ahmed MS, et al. Activation of Notch signaling in cardiomyocytes during post-infarction remodeling[J]. Scand Cardiovasc J, 2010, 44(6):359-366. DOI: 10.3109/14017431.2010.511256.
[13] 历志.Notch信号调控巨噬细胞参与心梗重塑的作用和分子机制研究[D]. 西安:第四军医大学,2013.
[14] Zheng J, Li J, Kou B, et al. MicroRNA-30e protects the heart against ischemia and reperfusion injury through autophagy and the Notch1/Hes1/Akt signaling pathway[J]. Int J Mol Med, 2018, 41(6):3221-3230. DOI: 10.3892/ijmm.2018.3548.
[15] 国家卫生计生委合理用药专家委员会,中国药师协会.心力衰竭合理用药指南(第2版)[J/CD].中国医学前沿杂志(电子版),2019,11(7):1-78. DOI:10.12037/YXQY.2019.07-01.
[16] Borghetti G, Eisenberg CA, Signore S, et al. Notch signaling modulates the electrical behavior of cardiomyocytes[J]. Am J Physiol Heart Circ Physiol, 2018, 314(1):H68-H81. DOI: 10.1152/ajpheart.00587.2016.
[17] 杨晓利,瞿惠燕,戎靖枫,等.心肌纤维化发病机制的研究进展[J].中西医结合心脑血管病杂志,2020,18(14):2255-2258. DOI:10.12102/j.issn.1672-1349.2020.14.014.
[18] Ahuja P, Perriard E, Perriard JC, et al. Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes[J]. J Cell Sci, 2004, 117(Pt 15):3295-3306. DOI: 10.1242/jcs.01159.
[19] Boudoulas KD, Hatzopoulos AK. Cardiac repair and regeneration: the Rubik's cube of cell therapy for heart disease[J]. Dis Model Mech, 2009, 2(7-8):344-358. DOI: 10.1242/dmm.000240.
[20] Zhou XL, Fang YH, Wan L, et al. Notch signaling inhibits cardiac fibroblast to myofibroblast transformation by antagonizing TGF-β1/Smad3 signaling[J]. J Cell Physiol, 2019, 234(6):8834-8845. DOI: 10.1002/jcp.27543.
[21] Rabinovitch M, Guignabert C, Humbert M, et al. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension[J]. Circ Res, 2014, 115(1):165-175. DOI: 10.1161/CIRCRESAHA.113.301141.
[22] Morris HE, Neves KB, Montezano AC, et al. Notch3 signalling and vascular remodelling in pulmonary arterial hypertension[J]. Clin Sci (Lond), 2019, 133(24):2481-2498. DOI: 10.1042/CS20190835.
[23] Li X, Zhang X, Leathers R, et al. Notch3 signaling promotes the development of pulmonary arterial hypertension[J]. Nat Med, 2009, 15(11):1289-1297. DOI: 10.1038/nm.2021.
[24] Wang Y, Dai S, Cheng X, et al. Notch3 signaling activation in smooth muscle cells promotes extrauterine growth restriction-induced pulmonary hypertension[J]. Nutr Metab Cardiovasc Dis, 2019, 29(6):639-651. DOI: 10.1016/j.numecd.2019.03.004.
[25] Chen X, Zhou W, Hu Q, et al. Exploration of the Notch3-HES5 signal pathway in monocrotaline-induced pulmonary hypertension using rat model[J]. Congenit Heart Dis, 2019, 14(3):396-402. DOI: 10.1111/chd.12733.
[26] Zhang Y, Xie X, Zhu Y, et al. Inhibition of Notch3 prevents monocrotaline-induced pulmonary arterial hypertension[J]. Exp Lung Res, 2015, 41(8):435-443. DOI: 10.3109/01902148.2015.1060545.
[27] Xiao Y, Gong D, Wang W. Soluble JAGGED1 inhibits pulmonary hypertension by attenuating notch signaling[J]. Arterioscler Thromb Vasc Biol, 2013, 33(12):2733-2739. DOI: 10.1161/ATVBAHA.113.302062.
[28] Chida A, Shintani M, Matsushita Y, et al. Mutations of NOTCH3 in childhood pulmonary arterial hypertension[J]. Mol Genet Genomic Med, 2014, 2(3):229-239. DOI: 10.1002/mgg3.58.
[29] Liu X, Mei M, Chen X, et al. Identification of genetic factors underlying persistent pulmonary hypertension of newborns in a cohort of Chinese neonates[J]. Respir Res, 2019, 20(1):174. DOI: 10.1186/s12931-019-1148-1.
[30] Morris HE, Neves KB, Nilsen M, et al. Notch3/Hes5 induces vascular dysfunction in hypoxia-induced pulmonary hypertension through ER stress and redox-sensitive pathways[J]. Hypertension, 2023, 80(8):1683-1696. DOI: 10.1161/HYPERTENSIONAHA. 122. 20449.
[31] Dabral S, Tian X, Kojonazarov B, et al. Notch1 signalling regulates endothelial proliferation and apoptosis in pulmonary arterial hypertension[J]. Eur Respir J, 2016, 48(4):1137-1149. DOI: 10.1183/13993003.00773-2015.
[32] Miyagawa K, Shi M, Chen PI, et al. Smooth muscle contact drives endothelial regeneration by BMPR2-Notch1-mediated metabolic and epigenetic changes[J]. Circ Res, 2019, 124(2):211-224. DOI: 10.1161/CIRCRESAHA.118. 313374.
|