[1] 赵冰可,李文化,王军泽,等.伊曲康唑缓释微球的制备及体外抗真菌性能评价[J].沈阳药科大学学报,2023,40(12):1577-1586.DOI:10.14066/j.cnki.cn21-1349/r.2022.1037.
[2] 张宇桐,朱琳,吴飞,等. 粒细胞集落刺激因子缓释微球的研制[J]. 中国医药工业杂志,2023,54(2):216-223. DOI:10.16522/j.cnki.cjph.2023.02.009.
[3] 孙金梅,余飞,徐志红,等. 注射用依匹哌唑缓释微球的体外释放度研究[J]. 中国新药杂志,2023,32(16):1684-1689. DOI:10.3969/j.issn.1003-3734.2023.16.013.
[4] Ruan L, Su M, Qin X, et al. Progress in the application of sustained-release drug microspheres in tissue engineering[J]. Mater Today Bio, 2022, 16: 100394. DOI: 10.1016/j.mtbio.2022.100394.
[5] 王丽喆,王英,谈飞,等. 含镁微球-凝胶复合体对MC3T3-E1细胞黏附和增殖的影响[J]. 口腔颌面修复学杂志,2022,23(1):11-19. DOI:10.19748/j.cn.kqxf.1009-3761. 2022.1.002.
[6] 李佳颖,孙琪琪,樊曦,等. 果胶@壳聚糖复合凝胶微球的制备及释药性能[J]. 高分子材料科学与工程,2023,39(6):42-53. DOI:10.16865/j.cnki.1000-7555.2023.0118.
[7] 王云鹏,张晓苗,谢卫红,等. 艾叶多糖明胶微球的制备及其体外释放性能[J]. 食品工业科技,2023,44(15):7-15. DOI:10.13386/j.issn1002-0306.2023010154.
[8] 李桂芳,康玲玲,朱华泰,等. 聚乳酸/羟基乙酸磁性微球的制备及其姜黄素负载[J]. 林产化学与工业,2023,43(5):95-101. DOI:10.3969/j.issn.0253-2417.2023.05.013.
[9] Qiu X,Li S,Li X, et al. Experimental study of β-TCP scaffold loaded with VAN/PLGA microspheres in the treatment of infectious bone defects[J]. Colloids Surf B Biointerfaces, 2022, 213: 112424. DOI: 10.1016/j.colsurfb.2022.112424.
[10] de Oliveira MA, Araújo RS, Mosqueira VCF. PEGylated and functionalized polylactide-based nanocapsules: an overview[J]. Int J Pharm, 2023, 636:122760. DOI: 10.1016/j.ijpharm.2023.122760.
[11] Lian X, Xu R, Liu S, et al. The preparation and study on properties of calcium sulfate bone cement combined tuning silk fibroin nanofibers and vancomycin-loaded silk fibroin microspheres[J].J Biomed Mater Res B Appl Biomater, 2022, 110(3): 564-572. DOI:10.1002/jbm.b.34935.
[12] 伊力哈木•麦麦提阿卜杜拉,黄晓夏,李璐遥,等. 聚合物基抗生素缓释载体治疗慢性骨髓炎[J]. 中国组织工程研究,2024,28(22):3597-3602. DOI:10.12307/2024.477.
[13] Rotman SG, Moriarty TF, Nottelet B, et al. Poly(aspartic acid) functionalized Poly(ϵ-Caprolactone) microspheres with enhanced hydroxyapatite affinity as bone targeting antibiotic carriers[J]. Pharmaceutics, 2020, 12(9): 885. DOI: 10.3390/pharmaceutics12090885.
[14] 毛璐,张伯松,董迪,等. 载万古霉素和美罗培南骨水泥人体局部释放研究[J]. 中国医院药学杂志,2022,42(20):2101-2104. DOI:10.13286/j.1001-5213.2022.20.04.
[15] Gao Z, Xu Y, Kan Y, et al. Comparison of antibacterial activity and biocompatibility of non-leaching nitrofuran bone cement loaded with vancomycin, gentamicin, and tigecycline[J]. J Orthop Surg Res, 2023, 18(1): 569. DOI: 10.1186/s13018-023-04055-2.
[16] 黄平,余晓芳,尤加锐,等. 抗生素骨水泥联合延迟外踝上穿支筋膜皮瓣治疗糖尿病足[J]. 中华显微外科杂志,2022,45(2):128-132. DOI:10.3760/cma.j.cn441206-20211201- 00284.
[17] 胡曙荣,冯瑞强,容英潮,等. 皮瓣覆盖、抗生素骨水泥填充、负压封闭灌注冲洗治疗创伤性骨髓炎并软组织缺损的临床研究[J]. 国际医药卫生导报,2022,28(2):215-218. DOI:10.3760/cma.j.issn.1007-1245.2022.02.017.
[18] 何晓英,韩锐,李光照,等. 聚合物/无机纳米粒子复合微球化学制备的研究进展[J]. 复合材料学报,2022,39(2):544-558. DOI:10.13801/j.cnki.fhclxb.20210607.001.
[19] 刘金晶,周强强,龙桂月,等. 聚乳酸羟基乙酸-甲状旁腺激素相关蛋白复合微球的制备形态表征及生物相容性研究[J]. 中国临床新医学,2022,15(6):507-511. DOI:10.3969/j.issn.1674-3806.2022.06.07.
[20] 李延森,王爱萍,梁荣财,等. 微球固化过程中溶剂去除速率对醋酸亮丙瑞林微球性质的影响[J]. 中国医药工业杂志,2023,54(6):927-936. DOI:10.16522/j.cnki.cjph.2023. 06.014.
[21] Wongrakpanich A, Khunkitchai N, Achayawat Y, et al. Ketorolac-loaded PLGA-/PLA-based microparticles stabilized by hyaluronic acid: effects of formulation composition and emulsification technique on particle characteristics and drug release behaviors[J]. Polymers (Basel), 2023, 15(2): 266. DOI:10.3390/polym15020266.
[22] Haim Zada M, Rottenberg Y, Domb AJ. Peptide loaded polymeric nanoparticles by non-aqueous nanoprecipitation[J]. J Colloid Interface Sci, 2022, 622: 904-913. DOI: 10.1016/j.jcis.2022.05.007.
[23] Silva AL, Rosalia RA, Sazak A, et al. Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: low-burst release is crucial for efficient CD8(+) T cell activation[J]. Eur J Pharm Biopharm, 2013, 83(3): 338-345. DOI: 10.1016/j.ejpb.2012.11.006.
[24] da Silva D, Kaduri M, Poley M, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems[J]. Chem Eng J, 2018, 340: 9-14. DOI: 10.1016/j.cej.2018.01.010.
[25] Li J, Li K, Du Y, et al. Dual-nozzle 3D printed nano-hydroxyapatite scaffold loaded with vancomycin sustained-release microspheres for enhancing bone regeneration[J]. Int J Nanomedicine, 2023, 18: 307-322. DOI:10.2147/IJN.S394366.
[26] Li S, Shi X, Xu B, et al. In vitro drug release and antibacterial activity evaluation of silkfibroin coated vancomycin hydrochloride loaded poly (lactic-co-glycolic acid) (PLGA) sustained release microspheres[J]. J Biomater Appl, 2022, 36(9): 1676-1688. DOI:10.1177/08853282211064098.
[27] Khamkongkaeo A, Jiamprasertboon A, Jinakul N, et al. Antibiotic-loaded hydroxyapatite scaffolds fabricated from Nile tilapia bones for orthopaedics[J]. Int J Pharm X, 2023, 5: 100169. DOI: 10.1016/j.ijpx.2023.100169.
[28] Maadani AM, Salahinejad E. Performance comparison of PLA- and PLGA-coated porous bioceramic scaffolds: mechanical, biodegradability, bioactivity, delivery and biocompatibility assessments[J]. J Control Release, 2022, 351: 1-7. DOI: 10.1016/j.jconrel.2022.09.022.
[29] Li J, Tang R, Zhang P, et al. The preparation and characterization of chitooligosaccharide-polylactide polymers, and in vitro release of microspheres loaded with vancomycin[J]. J Funct Biomater, 2022, 13(3): 113. DOI: 10.3390/jfb13030113.
[30] Ambrose CG, Clyburn TA, Louden K, et al. Effective treatment of osteomyelitis with biodegradable microspheres in a rabbit model[J]. Clin Orthop Relat Res, 2004, (421): 293-299. DOI: 10.1097/01.blo.0000126303. 41711.a2.
|