[1] Lemaignen A, Bernard L, Marmor S, et al. Epidemiology of complex bone and joint infections in France using a national registry: the CRIOAc network[J]. J Infect, 2021, 82(2):199-206. DOI: 10.1016/j.jinf.2020.12.010.
[2] Kunutsor SK, Barrett MC, Whitehouse MR, et al. Incidence, temporal trends and potential risk factors for prosthetic joint infection after primary total shoulder and elbow replacement: systematic review and meta-analysis[J]. J Infect, 2020, 80(4):426-436. DOI: 10.1016/j.jinf.2020.01.008.
[3] Matheis C, Stöggl T. Strength and mobilization training within the first week following total hip arthroplasty[J]. J Bodyw Mov Ther, 2018, 22(2):519-527. DOI: 10.1016/j.jbmt.2017.06.012.
[4] Li C, Ojeda-Thies C, Renz N, et al. The global state of clinical research and trends in periprosthetic joint infection: a bibliometric analysis[J]. Int J Infect Dis, 2020, 96: 696-709. DOI: 10.1016/j.ijid.2020.05.014.
[5] Xu Y, Wang L, Xu W. Risk factors affect success rate of debridement, antibiotics and implant retention (DAIR) in periprosthetic joint infection[J]. Arthroplasty, 2020, 2(1): 37. DOI: 10.1186/s42836-020-00056-2.
[6] Toh RX, Yeo ZN, Liow MHL, et al. Debridement, antibiotics, and implant retention in periprosthetic joint infection: what predicts success or failure? [J] J Arthroplasty, 2021, 36(10): 3562-3569. DOI: 10.1016/j.arth.2021.05.023.
[7] Löwik CAM, Parvizi J, Jutte PC, et al. Debridement, antibiotics, and implant retention is a viable treatment option for early periprosthetic joint infection presenting more than 4 weeks after index arthroplasty[J]. Clin Infect Dis, 2020, 71(3): 630-636. DOI: 10.1093/cid/ciz867.
[8] Hexter AT, Hislop SM, Blunn GW, et al. The effect of bearing surface on risk of periprosthetic joint infection in total hip arthroplasty: a systematic review and meta-analysis[J]. Bone Joint J, 2018, 100-B(2): 134-142. DOI: 10.1302/0301-620X.100B2.BJJ-2017-0575.R1.
[9] Li C, Renz N, Trampuz A. Management of periprosthetic joint infection[J]. Hip Pelvis, 2018, 30(3): 138-146. DOI: 10.5371/hp.2018.30.3.138.
[10] Humphreys H, Hoffman P. The conundrum of ultraclean air, deep infections, and artificial joint replacement[J]. J Hosp Infect, 2020, 104(1): 123-124. DOI: 10.1016/j.jhin.2019.09.016.
[11] Shi H, Xiao L, Wang Z. Curative effect of artificial femoral head replacement and its effect on hip joint function and complications of senile patients with femoral intertrochanteric fracture[J]. Exp Ther Med, 2018, 16(2):623-628. DOI: 10.3892/etm.2018.6214.
[12] Wildeman P, Rolfson O, Söderquist B, et al. What are the long-term outcomes of mortality, quality of life, and hip function after prosthetic joint infection of the hip? a 10-year follow-up from Sweden[J]. Clin Orthop Relat Res, 2021, 479(10): 2203-2213. DOI: 10.1097/CORR.0000000000001838.
[13] 王先令,闭彩莹,周国强,等. 含呋喃唑酮与含甲硝唑的四联方案治疗青霉素过敏人群幽门螺杆菌感染的疗效及安全性[J]. 国际医药卫生导报,2023,29(24):3666-3670. DOI: 10.3760/cma.j.issn.1007-1245.2023.24.030.
[14] Crevoisier XM, Reber P, Noesberger B. Is suction drainage necessary after total joint arthroplasty? a prospective study[J]. Arch Orthop Trauma Surg, 1998, 117(3): 121-124. DOI: 10.1007/s004020050210.
[15] Sen O, Kizilkilic O, Aydin MV, et al. The role of closed-suction drainage in preventing epidural fibrosis and its correlation with a new grading system of epidural fibrosis on the basis of MRI[J]. Eur Spine J, 2005, 14(4): 409-414. DOI: 10.1007/s00586-004-0801-6.
[16] Petis SM, Perry KI, Mabry TM, et al. Two-stage exchange protocol for periprosthetic joint infection following total knee arthroplasty in 245 knees without prior treatment for infection[J]. J Bone Joint Surg Am, 2019, 101(3):239-249. DOI: 10.2106/JBJS.18.00356.
[17] Zhou XD, Li J, Xiong Y, et al. Do we really need closed-suction drainage in total hip arthroplasty? a meta-analysis[J]. Int Orthop, 2013, 37(11): 2109-2118. DOI: 10.1007/s00264-013-2053-8.
[18] Li N, Li P, Liu M, et al. Comparison between autologous blood transfusion drainage and no drainage/closed-suction drainage in primary total hip arthroplasty: a meta-analysis[J]. Arch Orthop Trauma Surg, 2014, 134(11):1623-1631. DOI: 10.1007/s00402-014-2090-9.
[19] 郭伟康,黄健,刘松浪,等. 全髋关节置换术后是否留置引流管及拔管时间对隐性出血及功能恢复的影响[J]. 中国骨伤,2020,33(8):716-720. DOI:10.12200/j.issn.1003-0034.2020.08.006.
[20] Mandell JB, Orr S, Koch J, et al. Large variations in clinical antibiotic activity against staphylococcus aureus biofilms of periprosthetic joint infection isolates[J]. J Orthop Res, 2019, 37(7): 1604-1609. DOI: 10.1002/jor.24291.
[21] Chiu PC, Li YJ, Chiou RYY. Peroxidase characterization isolated from germinated peanut embryos (GPE) and application of the freeze-dried GPE powder as enzyme source for biomimetic production of δ-viniferin[J]. Process Biochem, 2018, 66(MAR): 97-105. DOI:10.1016/j.procbio.2017.11.019.
[22] Conway JD, Hlad LM, Bark SE. Antibiotic cement-coated plates for management of infected fractures[J]. Am J Orthop (Belle Mead NJ), 2015, 44(2): E49-53.
[23] Grabel ZJ, Boden A, Segal DN, et al. The impact of prophylactic intraoperative vancomycin powder on microbial profile, antibiotic regimen, length of stay, and reoperation rate in elective spine surgery[J]. Spine J, 2019, 19(2): 261-266. DOI: 10.1016/j.spinee.2018.05.036.
[24] Scholten R, Klein Klouwenberg PMC, Gisolf JEH, et al. Empiric antibiotic therapy in early periprosthetic joint infection: a retrospective cohort study[J]. Eur J Orthop Surg Traumatol, 2023, 33(1): 29-35. DOI: 10.1007/s00590-021-03156-0.
[25] Tatarelli P, Romani T, Santoro V, et al. Debridement, antibiotics and implant retention (DAIR): an effective treatment option for early prosthetic joint infections[J]. J Infect Chemother, 2021, 27(8): 1162-1168. DOI: 10.1016/j.jiac.2021.03.009.
[26] Badie AA, Arafa MS. One-stage surgery for adult chronic osteomyelitis: concomitant use of antibiotic-loaded calcium sulphate and bone marrow aspirate[J]. Int Orthop, 2019, 43(5):1061-1070. DOI: 10.1007/s00264-018-4063-z.
[27] Fink B, Schuster P, Braun R, et al. The diagnostic value of routine preliminary biopsy in diagnosing late prosthetic joint infection after hip and knee arthroplasty[J]. Bone Joint J, 2020, 102-B(3): 329-335. DOI: 10.1302/0301-620X.102B3.BJJ-2019-0684.R1.
[28] Caroom C, Tullar JM, Benton EG, et al. Intrawound vancomycin powder reduces surgical site infections in posterior cervical fusion[J]. Spine (Phila Pa 1976), 2013, 38(14): 1183-1187. DOI: 10.1097/BRS.0b013e31828fcfb5.
[29] Hill BW, Emohare O, Song B, et al. The use of vancomycin powder reduces surgical reoperation in posterior instrumented and noninstrumented spinal surgery[J]. Acta Neurochir (Wien), 2014, 156(4):749-754. DOI: 10.1007/s00701-014-2022-z.
[30] Strom RG, Pacione D, Kalhorn SP, et al. Decreased risk of wound infection after posterior cervical fusion with routine local application of vancomycin powder[J]. Spine (Phila Pa 1976), 2013, 38(12):991-994. DOI: 10.1097/BRS.0b013e318285b219.
|