[1] Koronowski
KB, Sassone-Corsi P. Communicating clocks shape circadian homeostasis[J].
Science, 2021, 371(6530):eabd0951. DOI: 10.1126/science.abd0951.
[2] Mikulska AA, Grzelak T, Pelczyńska M, et
al. Assessment of selected clock proteins (CLOCK and CRY1) and their relationship
with biochemical, anthropometric, and lifestyle parameters in hypertensive
patients[J]. Biomolecules, 2021, 11(4):517. DOI: 10.3390/biom11040517.
[3] Cal-Kayitmazbatir S, Kulkoyluoglu-Cotul
E, Growe J, et al. CRY1-CBS binding regulates circadian clock function and
metabolism[J]. FEBS J, 2021, 288(2):614-639. DOI: 10.1111/febs.15360.
[4] Patke A, Young MW, Axelrod S. Molecular
mechanisms and physiological importance of circadian rhythms[J]. Nat Rev Mol
Cell Biol, 2020, 21(2):67-84. DOI: 10.1038/s41580-019-0179-2.
[5] Honma S. Development of the mammalian
circadian clock[J]. Eur J Neurosci, 2020, 51(1):182-193. DOI:
10.1111/ejn.14318.
[6] Partch CL, Green CB, Takahashi JS.
Molecular architecture of the mammalian circadian clock[J]. Trends Cell Biol,
2014, 24(2):90-99. DOI: 10.1016/j.tcb.2013.07.002.
[7] Cox KH, Takahashi JS. Circadian clock
genes and the transcriptional architecture of the clock mechanism[J]. J Mol
Endocrinol, 2019, 63(4):R93-R102. DOI: 10.1530/JME-19-0153.
[8] Xiang K, Xu Z, Hu YQ, et al. Circadian
clock genes as promising therapeutic targets for autoimmune diseases[J].
Autoimmun Rev, 2021, 20(8):102866. DOI: 10.1016/j.autrev.2021.102866.
[9] Zhu Y, Xian X, Wang Z, et al. Research
progress on the relationship between atherosclerosis and inflammation[J].
Biomolecules, 2018, 8(3):80. DOI: 10.3390/biom8030080.
[10] McAlpine CS, Swirski FK. Circadian
influence on metabolism and inflammation in atherosclerosis[J]. Circ Res, 2016,
119(1):131-141. DOI: 10.1161/CIRCRESAHA. 116.308034.
[11] Yang L, Chu Y, Wang L, et al.
Overexpression of CRY1 protects against the development of atherosclerosis via
the TLR/NF-κB pathway[J]. Int Immunopharmacol, 2015, 28(1):525-530. DOI:
10.1016/j.intimp.2015.07.001.
[12] Tao J, Xia L, Cai Z, et al. Interaction
between microRNA and DNA methylation in atherosclerosis[J]. DNA Cell Biol,
2021, 40(1):101-115. DOI: 10.1089/dna.2020.6138.
[13] Qin B, Deng Y. Overexpression of
circadian clock protein cryptochrome (CRY) 1 alleviates sleep deprivation-induced
vascular inflammation in a mouse model[J]. Immunol Lett, 2015, 163(1):76-83.
DOI: 10.1016/j.imlet.2014.11.014.
[14] Yang L, Chu Y, Wang L, et al.
Overexpression of CRY1 protects against the development of atherosclerosis via
the TLR/NF-κB pathway[J]. Int Immunopharmacol, 2015, 28(1):525-530. DOI:
10.1016/j.intimp.2015.07.001.
[15] Okamura H, Doi M, Goto K, et al. Clock
genes and salt-sensitive hypertension: a new type of aldosterone-synthesizing
enzyme controlled by the circadian clock and angiotensin II[J]. Hypertens Res,
2016, 39(10):681-687. DOI: 10.1038/hr.2016.91.
[16] Doi M, Takahashi Y, Komatsu R, et al.
Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves
dysregulated adrenal Hsd3b6[J]. Nat Med, 2010, 16(1):67-74. DOI:
10.1038/nm.2061.
[17] Douma LG, Gumz ML. Circadian
clock-mediated regulation of blood pressure[J]. Free Radic Biol Med, 2018,
119:108-114. DOI: 10.1016/j.freeradbiomed. 2017. 11.024.
[18] 马明怡,惠红,张晓卉.高血压患者血压与PWV、ABI相关性的研究进展[J].心脏杂志,2021,33(2):214-217.
DOI:10.12125/j.chj.202011065.
[19] Rhoads MK, Balagee V, Thomas SJ.
Circadian regulation of blood pressure: of mice and men[J]. Curr Hypertens Rep,
2020, 22(6):40. DOI: 10.1007/s11906-020-01043-3.
[20] 王曜晖,赵智权,杜运松,等.昼夜节律与脂质代谢关系的研究进展[J].山东医药,2018,58(10):99-102.
DOI:10.3969/j.issn.1002-266X.2018.10.031.
[21] Ando H, Kumazaki M, Motosugi Y, et al.
Impairment of peripheral circadian clocks precedes metabolic abnormalities in
ob/ob mice[J]. Endocrinology, 2011, 152(4):1347-1354. DOI: 10.1210/en.2010-1068.
[22] Barclay JL, Shostak A, Leliavski A, et
al. High-fat diet-induced hyperinsulinemia and tissue-specific insulin
resistance in Cry-deficient mice[J]. Am J Physiol Endocrinol Metab, 2013,
304(10):E1053-E1063. DOI: 10.1152/ajpendo.00512.2012.
[23] Tong X, Zhang D, Shabandri O, et al.
DDB1 E3 ligase controls dietary fructose-induced ChREBPα stabilization and
liver steatosis via CRY1[J]. Metabolism, 2020, 107:154222. DOI:
10.1016/j.metabol.2020.154222.
[24] Veerman KJ, Venegas-Pino DE, Shi Y, et
al. Hyperglycaemia is associated with impaired vasa vasorum neovascularization
and accelerated atherosclerosis in apolipoprotein-E deficient mice[J].
Atherosclerosis, 2013, 227(2):250-258. DOI: 10.1016/j.atherosclerosis. 2013.
01.018.
[25] Mukherji A, Bailey SM, Staels B, et al.
The circadian clock and liver function in health and disease[J]. J Hepatol,
2019, 71(1):200-211. DOI: 10.1016/j.jhep.2019.03.020.
[26] Lamia KA, Papp SJ, Yu RT, et al.
Cryptochromes mediate rhythmic repression of the glucocorticoid receptor[J].
Nature, 2011, 480(7378):552-556. DOI: 10.1038/nature10700.
[27] Zhang EE, Liu Y, Dentin R, et al.
Cryptochrome mediates circadian regulation of cAMP signaling and hepatic
gluconeogenesis[J]. Nat Med, 2010, 16(10):1152-1156. DOI: 10.1038/nm.2214.
[28] Hatori M, Panda S. CRY links the
circadian clock and CREB-mediated gluconeogenesis[J]. Cell Res, 2010,
20(12):1285-1288. DOI: 10.1038/cr.2010.152.
[29] Lesicka M, Jabłońska E, Wieczorek E, et
al. A different methylation profile of circadian genes promoter in breast
cancer patients according to clinicopathological features[J]. Chronobiol Int,
2019, 36(8):1103-1114. DOI: 10.1080/07420528.2019.1617732.
[30] Hunter AL, Ray DW. Circadian clock
regulation of hepatic energy metabolism regulatory circuits[J]. Biology
(Basel), 2019, 8(4):79. DOI: 10.3390/biology8040079.
[31] Toledo M, Batista-Gonzalez A, Merheb E,
et al. Autophagy regulates the liver clock and glucose metabolism by degrading
CRY1[J]. Cell Metab, 2018, 28(2):268-281.e4. DOI: 10.1016/j.cmet.2018.05.023.
|