[1] 邓晓妃,姜伟,郭航,等.超声E成像联合超声造影在甲状腺癌筛查中的价值[J].国际医药卫生导报,2020,26(22):3406-3409. DOI:10.3760/cma.j.issn.1007-1245.2020. 22.012.
[2] 侯梦琦,李芳,孙辉.结节性甲状腺肿流行病学再认识与危险因素分析[J].中华地方病学杂志,2020,39(3):226-230. DOI:10.3760/cma.j.cn231583-20191122-00327.
[3] 刘慧轩,何雅军.血清标志物在鉴别甲状腺结节性质中的研究进展[J].医学理论与实践,2022,35(8):1293-1295,1301. DOI:10.19381/j.issn.1001-7585.2022.08.010.
[4] 卢晓玲,黄鹏飞,田付丽,等.甲状腺超声影像报告和数据系统对甲状腺结节良恶性的鉴别诊断价值[J/CD].中华医学超声杂志(电子版),2019,16(8):597-601. DOI:10.3877/cma.j.issn.1672-6448.2019.08.009.
[5] Durante C, Grani G, Lamartina L, et al. The diagnosis and management of thyroid nodules: a review[J]. JAMA, 2018, 319(9):914-924. DOI: 10.1001/jama.2018.0898.
[6] Horvath E, Majlis S, Rossi R, et al. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management[J]. J Clin Endocrinol Metab, 2009, 94(5):1748-1751. DOI: 10.1210/jc.2008-1724.
[7] Tessler FN, Middleton WD, Grant EG, et al. ACR thyroid imaging, reporting and data system (TI-RADS): white paper of the ACR TI-RADS committee[J]. J Am Coll Radiol, 2017, 14(5):587-595. DOI: 10.1016/j.jacr.2017.01.046.
[8] Zhou J, Yin L, Wei X, et al. 2020 Chinese guidelines for ultrasound malignancy risk stratification of thyroid nodules: the C-TIRADS[J]. Endocrine, 2020, 70(2):256-279. DOI: 10.1007/s12020-020-02441-y.
[9] 施红卫,王辉阳,邓华东,等.超声造影联合细针穿刺活检及BRAF基因检测对TI-RADS 4类甲状腺结节的诊断价值[J].中华超声影像学杂志,2022,31(3):214-219. DOI:10.3760/cma.j.cn131148-20210816-00565.
[10] 高明.甲状腺结节和分化型甲状腺癌诊治指南[J].中国肿瘤临床,2012,39(17):1249-1272. DOI:10.3969/j.issn.1000- 8179.2012.17.003.
[11] 吕艳,李翀,葛善义,等.TI-RADS 4a类甲状腺结节粗针穿刺活检组织中HBME-1、CD56、CK19和galectin-3蛋白异常表达对病理诊断的意义[J].实用医学杂志,2019,35(2):294-298. DOI:10.3969/j.issn.1006-5725.2019.02.028.
[12] Menz A, Bauer R, Kluth M, et al. Diagnostic and prognostic impact of cytokeratin 19 expression analysis in human tumors: a tissue microarray study of 13,172 tumors[J]. Hum Pathol, 2021, 115:19-36. DOI: 10.1016/j.humpath.2021.05.012.
[13] Mohapatra D, Naik S, Das P, et al. Metastatic hobnail variant of papillary thyroid carcinoma: a diagnostic challenge in cell block preparation[J]. Indian J Pathol Microbiol, 2021, 64(2):358-361. DOI: 10.4103/IJPM.IJPM_381_20.
[14] 詹小林,周燕,曹艳芸,等.超声引导下细针穿刺细胞病理学联合CK19、TPO检测对TI-RADS 4a和4b类甲状腺结节的诊断价值[J].安徽医药,2022,26(4):684-688. DOI:10.3969/j.issn.1009-6469.2022.04.010.
[15] Dhingra JK. Ultrasound-guided fine-needle biopsy of first 1000 consecutive thyroid nodules: single-surgeon experience[J]. OTO Open, 2020, 4(2):2473974X20929008. DOI: 10.1177/2473974X20929008.
[16] Dong Y, Gao L, Sui Y, et al. Comparison of ultrasound-guided fine-needle cytology quality in thyroid nodules with 22-, 23-, and 25-gauge needles[J]. Anal Cell Pathol (Amst), 2021, 2021:5544921. DOI: 10.1155/2021/5544921.
[17] Kosmas K, Tsonou A, Mitropoulou G, et al. Malignant pleural effusion from papillary thyroid carcinoma diagnosed by pleural effusion cytology: a case report[J]. Diagn Cytopathol, 2018, 46(2):204-207. DOI: 10.1002/dc.23824.
[18] Tabriz N, Grone J, Uslar V, et al. BRAF V600E mutation correlates with aggressive clinico-pathological features but does not influence tumor recurrence in papillary thyroid carcinoma-10-year single-center results[J]. Gland Surg, 2020, 9(6):1902-1913. DOI: 10.21037/gs-20-244.
[19] Zhang L, Gu J, Zhao Y, et al. The role of multimodal ultrasonic flow imaging in Thyroid Imaging Reporting and Data System (TI-RADS) 4 nodules[J]. Gland Surg, 2020, 9(5):1469-1477. DOI: 10.21037/gs-20-641.
[20] Toprak M, Kashi M, Hamele-Bena D, et al. Ultrasound-guided fine-needle aspiration biopsy of thyroid neoplasms with lipomatous stroma: report of two cases[J]. Diagn Cytopathol, 2021, 49(10):E379-E384. DOI: 10.1002/dc.24833.
[21] Huang L, Wang X, Huang X, et al. Diagnostic significance of CK19, galectin-3, CD56, TPO and Ki67 expression and BRAF mutation in papillary thyroid carcinoma[J]. Oncol Lett, 2018, 15(4):4269-4277. DOI: 10.3892/ol.2018.7873.
[22] Arcolia V, Journe F, Renaud F, et al. Combination of galectin-3, CK19 and HBME-1 immunostaining improves the diagnosis of thyroid cancer[J]. Oncol Lett, 2017, 14(4):4183-4189. DOI: 10.3892/ol.2017.6719.
[23] Tastekin E, Keskin E, Can N, et al. CD56, CD57, HBME1, CK19, Galectin-3 and p63 immunohistochemical stains in differentiating diagnosis of thyroid benign/malign lesions and NIFTP[J]. Pol J Pathol, 2019, 70(4):286-294. DOI: 10.5114/pjp.2019.93131.
[24] Han RL, Wang J, Zhang FJ, et al. Ultrasound risk assessment combined with molecular markers of galectin-3, c-MET, HBME-1 and CK19 for diagnosis of malignant and benign thyroid nodules[J]. Pathol Oncol Res, 2019, 25(3):1075-1081. DOI: 10.1007/s12253-018- 0485-6.
[25] Brandenburg T, Muchalla P, Theurer S, et al. Therapeutic effect of combined dabrafenib and trametinib treatment of BRAF V600E-mutated primary squamous cell carcinoma of the thyroid: a case report[J]. Eur Thyroid J, 2021, 10(6):511-516. DOI: 10.1159/000518055.
[26] Spirina LV, Chizhevskaya SY, Kovaleva IV, et al. The association of the BRAF-V600E mutation with the expression of the molecular markers in the primary tumor and metastatic tissue in papillary thyroid cancer[J]. Asian Pac J Cancer Prev, 2021, 22(7):2017-2024. DOI: 10.31557/APJCP.2021.22.7.2017.
[27] Sheng D, Yu X, Li H, et al. BRAF V600E mutation and the Bethesda System for Reporting Thyroid Cytopathology of fine-needle aspiration biopsy for distinguishing benign from malignant thyroid nodules[J]. Medicine (Baltimore), 2021, 100(37):e27167. DOI: 10.1097/MD.0000000000027167.
[28] Shi C, Cao J, Shi T, et al. BRAFV600E mutation, BRAF-activated long non-coding RNA and miR-9 expression in papillary thyroid carcinoma, and their association with clinicopathological features[J]. World J Surg Oncol, 2020, 18(1):145. DOI: 10.1186/s12957-020- 01923-7.
[29] Zhao CK, Zheng JY, Sun LP, et al. BRAFV600E mutation analysis in fine-needle aspiration cytology specimens for diagnosis of thyroid nodules: the influence of false-positive and false-negative results[J]. Cancer Med, 2019, 8(12):5577-5589. DOI: 10.1002/cam4.2478.
[30] Robb R, Yang L, Shen C, et al. Inhibiting BRAF oncogene-mediated radioresistance effectively radiosensitizes BRAFV600E-mutant thyroid cancer cells by constraining DNA double-strand break repair[J]. Clin Cancer Res, 2019, 25(15):4749-4760. DOI: 10.1158/1078-0432.CCR-18-3625.
|