[1] Brodsky RA. Paroxysmal nocturnal hemoglobinuria[J].Blood,2014,124(18):2804-2811. DOI:10.1182/blood-2014-02-522128.
[2] Hosokawa K, Kajigaya S, Keyvanfar K, et al. T cell transcriptomes from paroxysmal nocturnal hemoglobinuria patients reveal novel signaling pathways[J].J Immunol,2017,199(2):477-488.DOI:10.4049/jimmunol.1601299.
[3] Park J, Kim M, Kim Y, et al. Clonal cell proliferation in paroxysmal nocturnal hemoglobinuria: evaluation of PIGA mutations and t-cell receptor clonality[J].Ann Lab Med,2019,39(5):438-446.DOI:10.3343/alm.2019.39. 5.438.
[4] Sun L, Babushok DV. Secondary myelodysplastic syndrome and leukemia in acquired aplastic anemia and paroxysmal nocturnal hemoglobinuria[J].Blood,2020,136(1):36-49.DOI:10.1182/blood.2019000940.
[5] 张之南, 沈悌. 血液病诊断及疗效标准[M].3版.北京:科学出版社,2007:19-23.
[6] DeZern AE, Uknis M, Yuan X, et al. Complement blockade with a C1 esterase inhibitor in paroxysmal nocturnal hemoglobinuria[J].Exp Hematol,2014,42(10):857-861.e1.DOI:10.1016/j.exphem.2014.06.007.
[7] Devalet B, Mullier F, Chatelain B, et al. Pathophysiology, diagnosis, and treatment of paroxysmal nocturnal hemoglobinuria: a review[J].Eur J Haematol,2015,95(3):190-198.DOI:10.1111/ejh.12543.
[8] Patel BJ, Barot SV, Waldron M, et al. Clonal dynamics of aplastic anemia/paroxysmal nocturnal hemoglobinuria[J].Leuk Lymphoma,2020,61(5):1242-1245.DOI:10.1080/10428194.2019.1706734.
[9] Baines AC, Brodsky RA. Complementopathies[J].Blood Rev,2017,31(4):213-223.DOI:10.1016/j.blre.2017.02.003.
[10] Nakamura Y, Takenaka K, Yamazaki H, et al. Outcome of allogeneic hematopoietic stem cell transplantation in adult patients with paroxysmal nocturnal hemoglobinuria[J].Int J Hematol,2021,113(1):122-127.DOI:10.1007/s12185-020-02982-y.
[11] Rosser EC, Mauri C. Regulatory B cells: origin, phenotype, and function[J].Immunity,2015,42(4):607-612.DOI:10.1016/j.immuni.2015.04.005.
[12] Carrier Y, Yuan J, Kuchroo VK, et al. Th3 cells in peripheral tolerance. I. Induction of Foxp3-positive regulatory T cells by Th3 cells derived from TGF-beta T cell-transgenic mice[J].J Immunol,2007,178(1):179-185.DOI:10.4049/jimmunol.178.1.179.
[13] Wing JB, Tanaka A, Sakaguchi S. Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer[J].Immunity,2019,50(2):302-316.DOI:10.1016/j.immuni.2019.01.020.
[14] Savage PA, Klawon DEJ, Miller CH. Regulatory t cell development[J].Annu Rev Immunol,2020,38:421-453.DOI:10.1146/annurev-immunol-100219-020937.
[15] Wolf D, Wolf AM, Rumpold H, et al. The expression of the regulatory t cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer[J].Clin Cancer Res,2005,11(23):8326-8331.DOI:10.1158/1078-0432.CCR-05-1244.
[16] Hirai T, Yang Y, Zenke Y, et al. Competition for active TGFβ cytokine allows for selective retention of antigen-specific tissue-resident memory T cells in the epidermal niche[J].Immunity,2021,54(1):84-98.e5.DOI:10.1016/j.immuni.2020.10.022.
[17] Zhang D, Chia C, Jiao X, et al. D-mannose induces regulatory T cells and suppresses immunopathology[J].Nat Med,2017,23(9):1036-1045.DOI:10.1038/nm.4375.
[18] Mishra S, Liao W, Liu Y, et al. TGF-β and Eomes control the homeostasis of CD8+ regulatory T cells[J].J Exp Med,2021,218(1):e20200030.DOI:10.1084/jem.20200030.
[19] Turner JA, Stephen-Victor E, Wang S, et al. Regulatory t cell-derived TGF-β1 controls multiple checkpoints governing allergy and autoimmunity[J].Immunity,2020,53(6):1202-1214.e6.DOI:10.1016/j.immuni.2020.10.002.
[20] White MPJ, Smyth DJ, Cook L, et al. The parasite cytokine mimic Hp-TGM potently replicates the regulatory effects of TGF-β on murine CD4+ T cells[J].Immunol Cell Biol,2021,99(8):848-864.DOI:10.1111/imcb.12479.
|