[1] Hoste EAJ, Kellum JA, Selby NM, et al. Global epidemiology and outcomes of acute kidney injury[J]. Nat Rev Nephrol, 2018, 14(10): 607-625. DOI: 10.1038/s41581-018-0052-0.
[2] Kellum JA. Why are patients still getting and dying from acute kidney injury?[J]. Curr Opin Crit Care, 2016, 22(6): 513-519. DOI: 10.1097/MCC.0000000000000358.
[3] Oh GS, Kim HJ, Shen A, et al. Cisplatin-induced kidney dysfunction and perspectives on improving treatment strategies[J]. Electrolyte Blood Press, 2014, 12(2): 55-65. DOI: 10.5049/EBP.2014.12.2.55.
[4] Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47. DOI: 10.1093/nar/gkv007.
[5] Tong Z, Cui Q, Wang J, et al. TransmiR v2.0: an updated transcription factor-microRNA regulation database[J]. Nucleic Acids Res, 2019, 47(D1): D253-D258. DOI: 10.1093/nar/gky1023.
[6] Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions[J]. Nat Methods, 2015, 12(8): 697. DOI: 10.1038/nmeth.3485.
[7] Xu HY, Zhang YQ, Liu ZM, et al. ETCM: an encyclopaedia of traditional Chinese medicine[J]. Nucleic Acids Res, 2019, 47(D1): D976-D982. DOI: 10.1093/nar/gky987.
[8] Rancoule C, Guy JB, Vallard A, et al. 50th anniversary of cisplatin[J]. Bull Cancer, 2017, 104(2): 167-176. DOI: 10.1016/j.bulcan.2016.11.011.
[9] Bonavia A, Singbartl K. A review of the role of immune cells in acute kidney injury[J]. Pediatr Nephrol, 2018, 33(10): 1629-1639. DOI: 10.1007/s00467-017-3774-5.
[10] Sato Y, Yanagita M. Immune cells and inflammation in AKI to CKD progression[J]. Am J Physiol Renal Physiol, 2018, 315(6): F1501-F1512. DOI: 10.1152/ajprenal.00195.2018.
[11] Hoffmann A, Baltimore D. Circuitry of nuclear factor kappaB signaling[J]. Immunol Rev, 2006, 210: 171-186. DOI: 10.1111/j.0105-2896.2006.00375.x.
[12] Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes[J]. Cell, 2003, 114(2): 181-190. DOI: 10.1016/s0092-8674(03)00521-x.
[13] Shao X, Yang X, Shen J, et al. TNF-α-induced p53 activation induces apoptosis in neurological injury[J]. J Cell Mol Med, 2020, 24(12): 6796-6803. DOI: 10.1111/jcmm. 15333.
[14] Vaseva AV, Marchenko ND, Ji K, et al. p53 opens the mitochondrial permeability transition pore to trigger necrosis[J]. Cell, 2012, 149(7): 1536-1548. DOI: 10.1016/j.cell.2012.05.014.
[15] Zhao M, Wang Y, Li L, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance[J]. Theranostics, 2021, 11(4): 1845-1863. DOI: 10.7150/thno.50905.
[16] Wei Q, Dong G, Yang T, et al. Activation and involvement of p53 in cisplatin-induced nephrotoxicity[J]. Am J Physiol Renal Physiol, 2007, 293(4): F1282-F1291. DOI: 10.1152/ajprenal.00230.2007.
[17] Xie Y, Zhu S, Song X, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 Activity[J]. Cell Rep, 2017, 20(7): 1692-1704. DOI: 10.1016/j.celrep.2017. 07.055.
[18] Kenzelmann Broz D, Spano Mello S, Bieging KT, et al.Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses[J]. Genes Dev, 2013, 27(9): 1016-1031. DOI: 10.1101/gad.212282.112.
[19] Yang Y, Duan W, Jin Z, et al.JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury[J]. J Pineal Res, 2013, 55(3): 275-86. DOI: 10.1111/jpi.12070.
[20] Meares GP, Liu Y, Rajbhandari R, et al.PERK-dependent activation of JAK1 and STAT3 contributes to endoplasmic reticulum stress-induced inflammation[J]. Mol Cell Biol, 2014, 34(20): 3911-3925. DOI: 10.1128/MCB.00980-14.
[21] Zhang L, Lu P, Guo X, et al. Inhibition of JAK2/STAT3 signaling pathway protects mice from the DDP-induced acute kidney injury in lung cancer[J]. Inflamm Res, 2019, 68(9): 751-760. DOI: 10.1007/s00011-019-01258-4.
[22] Pan J, Zhang C, Shi M, et al.Ethanol extract of Liriodendron chinense (Hemsl.) Sarg barks attenuates hyperuricemic nephropathy by inhibiting renal fibrosis and inflammation in mice[J]. J Ethnopharmacol, 2021, 264: 113278. DOI: 10.1016/j.jep.2020.113278.
[23] De Borst MH, Prakash J, Melenhorst WB, et al. Glomerular and tubular induction of the transcription factor c-Jun in human renal disease[J]. J Pathol, 2007, 213(2): 219-228. DOI: 10.1002/path.2228.
[24] Gao L, Liu MM, Zang HM, et al. Restoration of E-cadherin by PPBICA protects against cisplatin-induced acute kidney injury by attenuating inflammation and programmed cell death[J]. Lab Invest, 2018, 98(7): 911-923. DOI: 10.1038/s41374-018-0052-5.
[25] Yano T, Yazima S, Hagiwara K, et al. Activation of epidermal growth factor receptor in the early phase after renal ischemia-reperfusion in rat[J]. Nephron, 1999, 81(2): 230-233. DOI: 10.1159/000045281.
[26] Humes HD, Cieslinski DA, Coimbra TM, et al. Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure[J]. J Clin Invest, 1989, 84(6): 1757-1761. DOI: 10.1172/JCI114359.
[27] Chen R, Zhang J, Fan N, et al. Delta9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling[J]. Cell, 2013, 155(5): 1154-1165. DOI: 10.1016/j.cell.2013.10.042.
[28] Wang JL, Cheng HF, Shappell S, et al.A selective cyclooxygenase-2 inhibitor decreases proteinuria and retards progressive renal injury in rats[J]. Kidney Int, 2000, 57(6): 2334-2342. DOI: 10.1046/j.1523-1755. 2000.00093.x.
[29] Hasegawa K, Wakino S, Yoshioka K, et al. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function[J]. J Biol Chem, 2010, 285(17): 13045-13056. DOI: 10.1074/jbc.M109.067728.
[30] Qin W, Xie W, Yang X, et al. Inhibiting microRNA-449 attenuates cisplatin-induced injury in nrk-52e cells possibly via regulating the SIRT1/P53/BAX pathway[J]. Med Sci Monit, 2016, 22: 818-823. DOI: 10.12659/msm.897187.
[31] Zhang S, Sun H, Kong W, et al. Functional role of microRNA-500a-3P-loaded liposomes in the treatment of cisplatin-induced AKI[J]. IET Nanobiotechnol, 2020, 14(6): 465-469. DOI: 10.1049/iet-nbt.2019.0247.
[32] Yang A, Liu F, Guan B, et al. p53 induces miR-199a-3p to suppress mechanistic target of rapamycin activation in cisplatin-induced acute kidney injury[J]. J Cell Biochem, 2019, 120(10): 17625-17634. DOI: 10.1002/jcb.29030.
[33] Hsu YH, Chen TH, Wu MY, et al. Protective effects of Zhibai Dihuang Wan on renal tubular cells affected with gentamicin-induced apoptosis[J]. J Ethnopharmacol, 2014, 151(1): 635-642. DOI: 10.1016/j.jep.2013.11.031.
[34] 王珂,王瑞坡,李姣,等. 桑叶黄酮对腺嘌呤诱导大鼠高尿酸血症肾损伤的防治作用[J]. 天然产物研究与开发,2012,24(2): 172-175,202. DOI:10.3969/j.issn.1001-6880. 2012.02.008.
[35] 杨忠敏,沈以红,王祖文,等. 桑叶生物碱对D-半乳糖诱导氧化损伤模型小鼠肾脏的改善作用[J]. 食品科学, 2020, 41(19): 198-203. DOI:10.7506/spkx1002-6630- 20190816-179.
[36] 罗珊珊,蒋嘉烨,栗源,等. 半夏白术天麻汤对自发性高血压大鼠肾脏蛋白表达谱的影响[J]. 中药材, 2012, 35(6):935-939.
|