[1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin. 2021, 71(3):209-249. DOI: 10.3322/caac.21660.
[2] 王子鑫,柴宁莉,令狐恩强. 染色内镜用于食管癌早期诊断的研究进展[J/OL]. 中华胃肠内镜电子杂志,2024,11(2):123-126[2025-01-10].https://d.wanfangdata.com.cn/periodical/ChVQZXJpb2RpY2FsQ0hJMjAyNTA2MjISE3pod2NuamR6enoyMDI0MDIwMTEaCGQ4ZjM4bTFs. DOI:10.3877/cma.j.issn.2095-7157.2024. 02.011.
[3] Li C, Cui X, Ren M, et al. Identification of biomarkers and potential drug targets for esophageal cancer: a Mendelian randomization study[J]. Sci Rep, 2025,15(1):8176. DOI: 10.1038/s41598-025-93068-4.
[4] 宋群莉,关微,陈瑶莉. 信迪利单抗联合沙利度胺治疗中晚期食管癌的临床研究[J]. 国际医药卫生导报,2025,31(5):806-810. DOI:10.3760/cma.j.cn441417-20240425- 05021.
[5] Ajani JA, D'Amico TA, Bentrem DJ, et al. Esophageal and esophagogastric junction cancers, version 2.2019, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2019, 17(7):855-883. DOI: 10.6004/jnccn.2019.0033.
[6] Oppedisano F, Nesci S, Spagnoletta A. Mitochondrial sirtuin 3 and role of natural compounds: the effect of post-translational modifications on cellular metabolism[J]. Crit Rev Biochem Mol Biol, 2024, 59(3-4):199-220. DOI: 10.1080/10409238.2024.2377094.
[7] Ouyang S, Zhang Q, Lou L, et al. The double-edged sword of SIRT3 in cancer and its therapeutic applications[J]. Front Pharmacol, 2022, 13:871560. DOI: 10.3389/fphar.2022.871560.
[8] Cobanoğlu U, Dülger C, Kemik O, et al. A novel screening test for esophageal squamous cell carcinoma: sirtuin-3[J]. Eur Rev Med Pharmacol Sci, 2017, 21(23):5399-5401. DOI: 10.26355/eurrev_201712_13926.
[9] Yuan ML, Ren LH, Yu XC, et al. SIRT3 promotes the development of esophageal squamous cell carcinoma by regulating hexokinase 2 through the AKT signaling pathway[J]. Bull Exp Biol Med, 2022,174(1):81-88. DOI: 10.1007/s10517-022-05653-6.
[10] Pelossof R, Fairchild L, Huang CH, et al. Prediction of potent shRNAs with a sequential classification algorithm[J]. Nat Biotechnol, 2017, 35(4):350-353. DOI: 10.1038/nbt.3807.
[11] Zhang P, Zhang W, Hong Z, et al. Elucidating the role of CYFIP2 in conferring cisplatin resistance in esophageal squamous cell carcinoma[J]. Sci Rep, 2024, 14(1):27130. DOI: 10.1038/s41598-024-77420-8.
[12] Hu H, Li B, Wang J, et al. New advances into cisplatin resistance in head and neck squamous carcinoma: Mechanisms and therapeutic aspects[J]. Biomed Pharmacother, 2023, 163:114778. DOI: 10.1016/j.biopha.2023.114778.
[13] Yue P, HanB, ZhaoY. Focus on the molecular mechanisms of cisplatin resistance based on multi-omics approaches[J]. Mol Omics, 2023, 19(4):297-307. DOI: 10.1039/d2mo00220e.
[14] Jones CL, Inguva A, Jordan CT. Targeting energy metabolism in cancer stem cells: progress and challenges in leukemia and solid tumors[J]. Cell Stem Cell, 2021, 28(3):378-393. DOI: 10.1016/j.stem.2021. 02.013.
[15] Jin B, Miao Z, Pan J, et al. The emerging role of glycolysis and immune evasion in ovarian cancer[J]. Cancer Cell Int, 2025 , 25(1):78. DOI: 10.1186/s12935-025-03698-x.
[16] Paul S, Ghosh S, Kumar S. Tumor glycolysis, an essential sweet tooth of tumor cells[J]. Semin Cancer Biol, 2022 , 86(Pt 3):1216-1230. DOI: 10.1016/j.semcancer.2022. 09.007.
[17] Ni X, Lu CP, Xu GQ, et al. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy[J]. Acta Pharmacol Sin,2024,45(8):1533-1555. DOI:10.1038/s41401-024-01264-1.
[18] Zhang YY, Zhou LM. Sirt3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2-mediated p53 degradation[J]. Biochem Biophys Res Commun, 2012, 423(1):26-31. DOI: 10.1016/j.bbrc.2012.05.053.
[19] Xuan ZH, Wang HP, Zhang XN, et al. PKMYT1 aggravates the progression of ovarian cancer by targeting SIRT3[J]. Eur Rev Med Pharmacol Sci, 2020, 24(10):5259-5266. DOI: 10.26355/eurrev_202005_21308.
[20] Kenny TC, Craig AJ, Villanueva A,et al. Mitohormesis primes tumor invasion and metastasis[J]. Cell Rep, 2019, 27(8):2292-2303.e6. DOI: 10.1016/j.celrep.2019.04.095.
[21] Zhang L, Ren X, Cheng Y, et al. Identification of Sirtuin 3, a mitochondrial protein deacetylase, as a new contributor to tamoxifen resistance in breast cancer cells[J]. Biochem Pharmacol, 2013, 86(6):726-33. DOI: 10.1016/j.bcp.2013.06.032.
[22] Paku M, Haraguchi N, Takeda M, et al. SIRT3-Mediated SOD2 and PGC-1α contribute to chemoresistance in colorectal cancer cells[J]. Ann Surg Oncol, 2021, 28(8):4720-4732. DOI: 10.1245/s10434-020-09373-x.
[23] Yan SM, Han X, Han PJ, et al. SIRT3 is a novel prognostic biomarker for esophageal squamous cell carcinoma[J]. Med Oncol, 2014,31(8):103. doi:10.1007/s12032-014- 0103-8.
[24] Cui Y, Qin L, Wu J, et al. SIRT3 Enhances glycolysis and proliferation in sirt3-expressing gastric cancer cells[J]. PLoS One, 2015, 10(6):e0129834. DOI: 10.1371/journal.pone.0129834.
[25] Zhang Q, Ren J, Wang F, et al. Mitochondrial and glucose metabolic dysfunctions in granulosa cells induce impaired oocytes of polycystic ovary syndrome through Sirtuin 3[J]. Free Radic Biol Med, 2022, 187:1-16. DOI: 10.1016/j.freeradbiomed.2022.05.010.
[26] Gao W, Zhang Y, Luo H, et al. Targeting SKA3 suppresses the proliferation and chemoresistance of laryngeal squamous cell carcinoma via impairing PLK1-AKT axis-mediated glycolysis[J]. Cell Death Dis, 2020, 11(10):919. DOI: 10.1038/s41419-020-03104-6.
[27] Wu J, Zhang X, Wang Y, et al. Licochalcone A suppresses hexokinase 2-mediated tumor glycolysis in gastric cancer via downregulation of the Akt signaling pathway[J]. Oncol Rep, 2018, 39(3):1181-1190. DOI: 10.3892/or.2017.6155.
|