[1] 徐杰茹,陈磊,张敏,等. 1990-2019年中国卵巢癌发病与死亡趋势及其年龄-时期-队列模型分析[J]. 中国肿瘤,2022,31(4):276-283. DOI:10.11735/j.issn.1004-0242.2022.04.A005.
[2] Shao C, Guo H, Chen L, et al. Prognostic factors and clinic-pathologic characteristics of ovarian tumor with different histologic subtypes-a SEER database population study of 41,376 cases[J]. Transl Cancer Res, 2023, 12(8): 1937-1950. DOI:10.21037/tcr-23-58.
[3] Nowak M, Klink M. The role of tumor-associated macrophages in the progression and chemoresistance of ovarian cancer[J]. Cells, 2020, 9(5): 1299. DOI:10.3390/cells9051299.
[4] Rocconi RP, Monk BJ, Walter A, et al. Gemogenovatucel-T (Vigil) immunotherapy demonstrates clinical benefit in homologous recombination proficient (HRP) ovarian cancer[J]. Gynecol Oncol, 2021, 161(3): 676-680. DOI:10.1016/j.ygyno.2021.03.009.
[5] Blanc-Durand F, Genestie C, Galende EY, et al. Distribution of novel immune-checkpoint targets in ovarian cancer tumor microenvironment: a dynamic landscape[J]. Gynecol Oncol, 2021, 160(1): 279-284. DOI:10.1016/j.ygyno.2020.09.045.
[6] Cibula D, Rob L, Mallmann P, et al. Dendritic cell-based immunotherapy (DCVAC/OvCa) combined with second-line chemotherapy in platinum-sensitive ovarian cancer (SOV02): a randomized, open-label, phase 2 trial[J]. Gynecol Oncol, 2021, 162(3): 652-660. DOI:10.1016/j.ygyno.2021.07.003.
[7] 戚新春,李阳,程卫. 甲状腺乳头状癌患者TCAB1、lncRNA DLEU2表达与临床病理参数及预后的相关性[J]. 国际医药卫生导报,2024,30(19):3302-3306. DOI:10.3760/cma.j.issn.1007-1245.2024.19.027.
[8] Zhang Z, Yan C, Li K, et al. Pan-cancer characterization of lncRNA modifiers of immune microenvironment reveals clinically distinct de novo tumor subtypes[J]. NPJ Genom Med, 2021, 6(1): 52. DOI:10.1038/s41525-021-00215-7.
[9] Saadi W, Fatmi A, Pallardó FV, et al. Long non-coding RNAs as epigenetic regulators of immune checkpoints in cancer immunity[J]. Cancers (Basel), 2022, 15(1): 184. DOI:10.3390/cancers15010184.
[10] Yeh CY, Aguirre K, Laveroni O, et al. Mapping spatial organization and genetic cell-state regulators to target immune evasion in ovarian cancer[J]. Nat Immunol, 2024, 25(10): 1943-1958. DOI:10.1038/s41590-024-01943-5.
[11] Palaia I, Tomao F, Sassu CM, et al. Immunotherapy for ovarian cancer: recent advances and combination therapeutic approaches[J]. Onco Targets Ther, 2020, 13: 6109-6129. DOI:10.2147/OTT.S205950.
[12] Eptaminitaki GC, Wolff N, Stellas D, et al. Long non-coding RNAs (lncRNAs) in response and resistance to cancer immunosurveillance and immunotherapy[J]. Cells, 2021, 10(12): 3313. DOI:10.3390/cells10123313.
[13] Oncul S, Amero P, Rodriguez-Aguayo C, et al. Long non-coding RNAs in ovarian cancer: expression profile and functional spectrum[J]. RNA Biol, 2020, 17(11): 1523-1534. DOI:10.1080/15476286.2019.1702283.
[14] Huang Y, Gui Z, Wu M, et al. Tumor-infiltrating B cell-related lncRNA crosstalk reveals clinical outcomes and tumor immune microenvironment in ovarian cancer based on single-cell and bulk RNA-sequencing[J]. Heliyon, 2024, 10(21): e39496. DOI:10.1016/j.heliyon.2024.e39496.
[15] Sun X, Li S, Lv X, et al. Immune-related long non-coding RNA constructs a prognostic signature of ovarian cancer[J]. Biol Proced Online, 2021, 23(1): 24. DOI:10.1186/s12575-021-00161-9.
[16] Mao TL, Fan MH, Dlamini N, et al. LncRNA MALAT1 facilitates ovarian cancer progression through promoting chemoresistance and invasiveness in the tumor microenvironment[J]. Int J Mol Sci, 2021, 22(19): 10201. DOI:10.3390/ijms221910201.
[17] Gordon MA, Babbs B, Cochrane DR, et al. The long non-coding RNA MALAT1 promotes ovarian cancer progression by regulating RBFOX2-mediated alternative splicing[J]. Mol Carcinog, 2019, 58(2): 196-205. DOI:10.1002/mc.22919.
[18] Xie M, Fu Q, Wang PP, et al. STAT1-induced upregulation lncRNA LINC00958 accelerates the epithelial ovarian cancer tumorigenesis by regulating Wnt/β-Catenin signaling[J]. Dis Markers, 2021, 2021: 1405045. DOI:10.1155/2021/1405045.
[19] Yan X, Yang Y, Guan H, et al. Exosomal LINC00958 maintains ovarian cancer cell stemness and induces M2 macrophage polarization via Hedgehog signaling pathway and GLI1 protein[J]. Int J Biol Macromol, 2024, 279(Pt 1): 135080. DOI:10.1016/j.ijbiomac.2024.135080.
[20] Peng Y, Wang H, Huang Q, et al. A prognostic model based on immune-related long noncoding RNAs for patients with epithelial ovarian cancer[J]. J Ovarian Res, 2022, 15(1): 8. DOI:10.1186/s13048-021-00930-w.
[21] Elsayed AM, Bayraktar E, Amero P, et al. PRKAR1B-AS2 long noncoding RNA promotes tumorigenesis, survival, and chemoresistance via the PI3K/AKT/mTOR pathway[J]. Int J Mol Sci, 2021, 22(4): 1882. DOI:10.3390/ijms22041882.
[22] Zheng ZJ, Liu Y, Wang HJ, et al. LncRNA SNHG17 promotes proliferation and invasion of ovarian cancer cells through up-regulating FOXA1[J]. Eur Rev Med Pharmacol Sci, 2020, 24(18): 9282-9289. DOI:10.26355/eurrev_202009_23010.
[23] Liang H, Geng S, Wang Y, et al. Tumour-derived exosome SNHG17 induced by oestrogen contributes to ovarian cancer progression via the CCL13-CCR2-M2 macrophage axis[J]. J Cell Mol Med, 2024, 28(9): e18315. DOI:10.1111/jcmm.18315.
[24] Li H, Liu ZY, Chen YC, et al. Identification and validation of an immune-related lncRNAs signature to predict the overall survival of ovarian cancer[J]. Front Oncol, 2022, 12: 999654. DOI:10.3389/fonc.2022.999654.
[25] Feng J, Yu Y, Yin W, et al. Development and verification of a 7-lncRNA prognostic model based on tumor immunity for patients with ovarian cancer[J]. J Ovarian Res, 2023, 16(1): 31. DOI:10.1186/s13048-023-01099-0.
|