[1] 宋美璇,刘斌,刘东. 川崎病患儿丙种球蛋白耐药列线图模型的构建与验证[J]. 中国现代医学杂志,2023,33(23):52-60. DOI:10.3969/j.issn.1005-8982.2023.23.010.
[2] 廖景文. 儿童川崎病标准初始治疗方案中使用静脉输注免疫球蛋白的适宜时机探讨[J]. 中国免疫学杂志,2024,40(6):1253-1258. DOI:10.3969/j.issn.1000-484X.2024.06.023.
[3] 闵丽,袁时健,刘亚红,等. 川崎病患儿血浆YKL-40、CRP、IL-6对急性期冠状动脉损伤的诊断价值[J]. 疑难病杂志,2023,22(4):367-372. DOI:10.3969/j.issn.1671-6450. 2023.04.006.
[4] 蒋萍影,唐国英,刘青. 血清SDC-1、CTRP1水平与川崎病患儿冠状动脉病变的相关性分析[J]. 中国妇幼健康研究,2023,34(7):38-44. DOI:10.3969/j.issn.1673-5293.2023. 07.006.
[5] 陈琳,梁彩文,龙丽娜. 川崎病患儿血清炎症因子、BNP、h-FABP水平变化及其与冠状动脉损伤的关系[J]. 海南医学,2021,32(15):1938-1941. DOI:10.3969/j.issn.1003- 6350.2021.15.009.
[6] McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association[J]. Circulation, 2017, 135(17): e927-e999. DOI: 10.1161/CIR.0000000000000484.
[7] Ayusawa M, Sonobe T, Uemura S, et al. Revision of diagnostic guidelines for Kawasaki disease (the 5th revised edition)[J]. Pediatr Int, 2005, 47(2): 232-234.DOI:10.1111/j.1442-200x.2005.02033.x.
[8] JCS Joint Working Group. Guidelines for diagnosis and management of cardiovascular sequelae in Kawasaki disease (JCS 2008)--digest version[J]. Circ J, 2010, 74(9):1989-2020. DOI:10.1253/circj.CJ-10-74-0903.
[9] Kuo HC. Diagnosis, progress, and treatment update of Kawasaki disease[J]. Int J Mol Sci, 2023, 24(18): 13948. DOI: 10.3390/ijms241813948.
[10] Hara T, Yamamura K, Sakai Y. The up-to-date pathophysiology of Kawasaki disease[J]. Clin Transl Immunology, 2021, 10(5):e1284. DOI: 10.1002/cti2.1284.
[11] 叶卉初,杨楠,侯安存. 川崎病的诊断治疗进展[J]. 临床和实验医学杂志,2021,20(2):222-225. DOI:10.3969/j.issn.1671-4695.2021.02.032.
[12] 董彤. 病原体感染与川崎病发病机制关系的研究进展[J]. 国际儿科学杂志,2020,47(1):18-21. DOI:10.3760/cma.j.issn.1673-4408.2020.01.005.
[13] 王琛玥,焦富勇,冯建英. 川崎病表观遗传学研究进展[J]. 中国妇幼健康研究,2022,33(6):122-126. DOI:10.3969/j.issn.1673-5293.2022.06.024.
[14] 江彦秋,黄先玫. 川崎病的免疫与遗传学发病机制研究进展[J]. 中华实用儿科临床杂志,2017,32(9):717-720. DOI:10.3760/cma.j.issn.2095-428X.2017.09.021.
[15] Tanaka T, Shimizu M, Tokuda O, et al. Kawasaki disease with an initial manifestation mimicking bacterial inguinal cellulitis[J]. Case Rep Pediatr, 2020, 2020:8889827. DOI: 10.1155/2020/8889827.
[16] Pilania RK, Vogeti R, Jindal AK, et al. When beau's lines in the acute phase of Kawasaki disease suggested a disease recurrence: a clinical oddity[J]. J Clin Rheumatol, 2021, 27(6): e228-e229. DOI: 10.1097/RHU.0000000000001324.
[17] Tsuda E, Yoneda S, Asaumi Y, et al. Cardiac events in patients in their forties with Kawasaki disease and regression of coronary artery aneurysms[J]. Cardiol Young, 2020, 30(12): 1821-1825. DOI: 10.1017/S104795112000284X.
[18] Mossberg M, Mohammad AJ, Kahn F, et al. High risk of coronary artery aneurysm in Kawasaki disease[J]. Rheumatology (Oxford), 2021, 60(4):1910-1914. DOI: 10.1093/rheumatology/keaa512.
[19] Santimahakullert K, Vijarnsorn C, Wongswadiwat Y, et al. A retrospective cohort study of major adverse cardiac events in children affected by Kawasaki disease with coronary artery aneurysms in Thailand[J]. PLoS One, 2022, 17(1): e0263060. DOI: 10.1371/journal.pone.0263060.
[20] Wang J, Chen H, Shi H, et al. Effect of different doses of aspirin on the prognosis of Kawasaki disease[J]. Pediatr Rheumatol Online J, 2020, 18(1):48. DOI: 10.1186/s12969-020-00432-x.
[21] Shashaani N, Shiari R, Karimi A, et al. Determination of the relationship between kobayashi, sano, and egami criteria and prevalence of intravenous immunoglobulin resistance and coronary artery aneurysm in Iranian children with Kawasaki disease[J]. Open Access Rheumatol, 2020, 12:187-192. DOI: 10.2147/OARRR.S255138.
[22] Genet G, Boyé K, Mathivet T, et al. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis[J]. Nat Commun, 2019, 10(1):2350. DOI: 10.1038/s41467-019-10359-x.
[23] Ash D, Sudhahar V, Youn SW, et al. The P-type ATPase transporter ATP7A promotes angiogenesis by limiting autophagic degradation of VEGFR2[J]. Nat Commun, 2021, 12(1): 3091. DOI: 10.1038/s41467-021-23408-1.
[24] Gustafsson T, Rundqvist H, Norrbom J, et al. The influence of physical training on the angiopoietin and VEGF-A systems in human skeletal muscle[J]. J Appl Physiol (1985), 2007, 103(3): 1012-1020. DOI: 10.1152/japplphysiol.01103.2006.
[25] Kivelä R, Hemanthakumar KA, Vaparanta K, et al. Endothelial cells regulate physiological cardiomyocyte growth via VEGFR2-mediated paracrine signaling[J]. Circulation, 2019, 139(22):2570-2584. DOI: 10.1161/CIRCULATIONAHA.118.036099.
[26] Verstockt B, Salas A, Sands BE, et al. IL-12 and IL-23 pathway inhibition in inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(7): 433-446. DOI: 10.1038/s41575-023-00768-1.
[27] Schinocca C, Rizzo C, Fasano S, et al. Role of the IL-23/IL-17 pathway in rheumatic diseases: an overview[J]. Front Immunol, 2021, 12:637829. DOI: 10.3389/fimmu.2021.637829.
[28] Abdo AIK, Tye GJ. Interleukin 23 and autoimmune diseases: current and possible future therapies[J]. Inflamm Res, 2020, 69(5):463-480. DOI: 10.1007/s00011-020-01339-9.
[29] Zheng R, Xie J, Li W, et al. MiR-223-3p affects the proliferation and apoptosis of HCAECs in Kawasaki disease by regulating the expression of FOXP3[J]. Immun Inflamm Dis, 2023, 11(7): e939. DOI: 10.1002/iid3.939.
[30] Zhang Y, Liu D, Long XX, et al. The role of FGF21 in the pathogenesis of cardiovascular disease[J]. Chin Med J (Engl), 2021, 134(24):2931-2943. DOI: 10.1097/CM9.0000000000001890.
[31] Tucker W, Tucker B, Rye KA, et al. Fibroblast growth factor 21 in heart failure[J]. Heart Fail Rev, 2023, 28(1): 261-272. DOI: 10.1007/s10741-022-10268-0.
|