International Medicine and Health Guidance News ›› 2023, Vol. 29 ›› Issue (5): 593-597.DOI: 10.3760/cma.j.issn.1007-1245.2023.05.001
• New Medical Advances • Next Articles
Research status of RAS/ERK signaling pathway in neurofibromatosis
Fu Zhixiong1, Zhang Ancheng2, Yang Yongjian2, Guo Weitao1
1 Spinal Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; 2 Guangdong Medical University, Zhanjiang 524000, China
Received:
2022-10-14
Online:
2023-03-01
Published:
2023-03-28
Contact:
Guo Weitao, Email: 1181487761@qq.com
Supported by:
Training and Construction Project of Orthopedic Science Research Center of the Second Affiliated Hospital of Guangdong Medical University (2021A05087)
RAS/ERK信号通路在神经纤维瘤病中的研究进展
符志雄1 张桉铖2 杨永键2 郭伟韬1
1广东医科大学附属第二医院脊柱外科,湛江 524000;2广东医科大学,湛江 524000
通讯作者:
郭伟韬,Email:1181487761@qq.com
基金资助:
广东医科大学附属第二医院骨科科学研究中心培育建设项目(2021A05087)
Fu Zhixiong, Zhang Ancheng, Yang Yongjian, Guo Weitao.
Research status of RAS/ERK signaling pathway in neurofibromatosis [J]. International Medicine and Health Guidance News, 2023, 29(5): 593-597.
符志雄 张桉铖 杨永键 郭伟韬.
RAS/ERK信号通路在神经纤维瘤病中的研究进展 [J]. 国际医药卫生导报, 2023, 29(5): 593-597.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.imhgn.com/EN/10.3760/cma.j.issn.1007-1245.2023.05.001
[1] Kresak JL, Walsh M. Neurofibromatosis: a review of NF1, NF2, and Schwannomatosis[J]. J Pediatr Genet, 2016, 5(2): 98-104. DOI: 10.1055/s-0036-1579766. [2] Wittinghofer A. Signal transduction via Ras[J]. Biol Chem, 1998, 379(8-9): 933-937. [3] Ferner RE. Neurofibromatosis 1 and neurofibromatosis 2: a twenty first century perspective[J]. Lancet Neurol, 2007, 6(4): 340-351. DOI: 10.1016/S1474-4422(07)70075-3. [4] Xu GF, O'Connell P, Viskochil D, et al. The neurofibromatosis type 1 gene encodes a protein related to GAP[J]. Cell, 1990, 62(3): 599-608. DOI: 10.1016/0092-8674(90)90024-9. [5] Stanbridge EJ. Human tumor suppressor genes[J]. Annu Rev Genet, 1990, 24: 615-657. DOI: 10.1146/annurev.ge.24.120190.003151. [6] Trahey M, McCormick F. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants[J]. Science, 1987, 238(4826): 542-545. DOI: 10.1126/science.2821624. [7] Tanaka K, Nakafuku M, Satoh T, et al . Cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein[J]. Cell, 1990, 60(5): 803-807. DOI: 10.1016/0092-8674(90)90094-u. [8] Marshall MS, Hill WS, Ng AS, et al. A C-terminal domain of GAP is sufficient to stimulate ras p21 GTPase activity[J]. EMBO J, 1989, 8(4): 1105-1110. DOI: 10.1002/j.1460-2075.1989.tb03480.x. [9] Ciechanover A, Orian A, Schwartz AL. Ubiquitin-mediated proteolysis: biological regulation via destruction[J]. Bioessays, 2000, 22(5): 442-451. DOI: 10.1002/(SICI)1521-1878(200005)22:5<442::AID-BIES6>3.0.CO;2-Q. [10] Dai Z, Quackenbush RC, Courtney KD, et al. Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent pathway[J]. Genes Dev, 1998, 12(10): 1415-1424. DOI: 10.1101/gad.12.10.1415. [11] Cichowski K, Santiago S, Jardim M, et al. Dynamic regulation of the Ras pathway via proteolysis of the NF1 tumor suppressor[J]. Genes Dev, 2003, 17(4): 449-454. DOI: 10.1101/gad.1054703. [12] Hollstein PE, Cichowski K. Identifying the ubiquitin ligase complex that regulates the NF1 tumor suppressor and Ras[J]. Cancer Discov, 2013, 3(8): 880-893. DOI: 10.1158/2159-8290.CD-13-0146. [13] Kato R, Nonami A, Taketomi T, et al. Molecular cloning of mammalian Spred-3 which suppresses tyrosine kinase-mediated erk activation[J]. Biochem Biophys Res Commun, 2003, 302(4): 767-772. DOI: 10.1016/s0006-291x(03)00259-6. [14] Gertler FB, Niebuhr K, Reinhard M, et al. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics[J]. Cell, 1996, 87(2): 227-239. DOI: 10.1016/s0092-8674(00)81341-0. [15] Stowe IB, Mercado EL, Stowe TR, et al. A shared molecular mechanism underlies the human rasopathies Legius syndrome and Neurofibromatosis-1[J]. Genes Dev, 2012, 26(13): 1421-1426. DOI: 10.1101/gad.190876.112. [16] Scheffzek K, Ahmadian MR, Wiesmüller L, et al. Structural analysis of the GAP-related domain from neurofibromin and its implications[J]. EMBO J, 1998, 17(15): 4313-4327. DOI: 10.1093/emboj/17.15.4313. [17] Basu TN, Gutmann DH, Fletcher JA, et al. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients[J]. Nature, 1992, 356(6371): 713-715. DOI: 10.1038/356713a0. [18] Packer RJ, Gutmann DH, Rubenstein A, et al. Plexiform neurofibromas in NF1: toward biologic-based therapy[J]. Neurology, 2002, 58(10): 1461-1470. DOI: 10.1212/wnl.58.10.1461. [19] Jessen WJ, Miller SJ, Jousma E, et al. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors[J]. J Clin Invest, 2013, 123(1): 340-347. DOI: 10.1172/JCI60578. [20] Gross AM, Frone M, Gripp KW, et al. Advancing RAS/RASopathy therapies: an NCI-sponsored intramural and extramural collaboration for the study of RASopathies[J]. Am J Med Genet A, 2020, 182(4): 866-876. DOI: 10.1002/ajmg.a.61485. [21] 彭词艳,陈景,李斯妮,等. 治疗神经纤维瘤病新药——丝裂原活化蛋白激酶抑制剂Selumetinib[J]. 肿瘤药学,2021,11(3):280-283. DOI:10.3969/j.issn.2095-1264.2021. 03.05. [22] Evans DG. Neurofibromatosis 2 Neurofibromatosis 2 [Bilateral acoustic neurofibromatosis, central neurofibromatosis, NF2, neurofibromatosis type II] [J]. Genet Med, 2009, 11(9): 599-610. DOI: 10.1097/GIM.0b013e3181ac9a27. [23] Stamenkovic I, Yu Q. Merlin, a "magic" linker between extracellular cues and intracellular signaling pathways that regulate cell motility, proliferation, and survival[J]. Curr Protein Pept Sci, 2010, 11(6): 471-484. DOI: 10.2174/138920310791824011. [24] Hilton DA, Ristic N, Hanemann CO. Activation of ERK, AKT and JNK signalling pathways in human schwannomas in situ[J]. Histopathology, 2009, 55(6): 744-749. DOI: 10.1111/j.1365-2559.2009.03440.x. [25] Yan W, Markegard E, Dharmaiah S, et al. Structural insights into the SPRED1-neurofibromin-KRAS complex and disruption of SPRED1-neurofibromin interaction by oncogenic EGFR[J]. Cell Rep, 2020, 32(3): 107909. DOI: 10.1016/j.celrep.2020.107909. [26] Cui Y, Groth S, Troutman S, et al. The NF2 tumor suppressor merlin interacts with Ras and RasGAP, which may modulate Ras signaling[J]. Oncogene, 2019, 38(36): 6370-6381. DOI: 10.1038/s41388-019-0883-6. [27] Cui Y, Ma L, Schacke S, et al. Merlin cooperates with neurofibromin and Spred1 to suppress the Ras-Erk pathway[J]. Hum Mol Genet, 2021, 29(23): 3793-3806. DOI: 10.1093/hmg/ddaa263. [28] Doherty JK, Ongkeko W, Crawley B, et al. ErbB and Nrg: potential molecular targets for vestibular schwannoma pharmacotherapy[J]. Otol Neurotol, 2008, 29(1): 50-57. DOI: 10.1097/mao.0b013e31815d4429. [29] Lallemand D, Manent J, Couvelard A, et al. Merlin regulates transmembrane receptor accumulation and signaling at the plasma membrane in primary mouse Schwann cells and in human schwannomas[J]. Oncogene, 2009, 28(6): 854-865. DOI: 10.1038/onc.2008.427. [30] Houshmandi SS, Emnett RJ, Giovannini M, et al. The neurofibromatosis 2 protein, merlin, regulates glial cell growth in an ErbB2- and Src-dependent manner[J]. Mol Cell Biol, 2009, 29(6): 1472-1486. DOI: 10.1128/MCB.01392-08. [31] Meier C, Parmantier E, Brennan A, et al. Developing Schwann cells acquire the ability to survive without axons by establishing an autocrine circuit involving insulin-like growth factor, neurotrophin-3, and platelet-derived growth factor-BB[J]. J Neurosci, 1999, 19(10): 3847-3859. DOI: 10.1523/JNEUROSCI.19-10-03847.1999. [32] Maudsley S, Zamah AM, Rahman N, et al. Platelet-derived growth factor receptor association with Na(+)/H(+) exchanger regulatory factor potentiates receptor activity[J]. Mol Cell Biol, 2000, 20(22): 8352-8363. DOI: 10.1128/MCB.20.22.8352-8363.2000. [33] Fraenzer JT, Pan H, Minimo L, et al. Overexpression of the NF2 gene inhibits schwannoma cell proliferation through promoting PDGFR degradation[J]. Int J Oncol, 2003, 23(6):1493-1500. [34] Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease[J]. Cell, 2017, 170(1): 17-33. DOI: 10.1016/j.cell.2017.06.009. [35] Maertens O, Cichowski K. An expanding role for RAS GTPase activating proteins (RAS GAPs) in cancer[J]. Adv Biol Regul, 2014, 55:1-14. DOI: 10.1016/j.jbior.2014. 04.002. [36] Drugan JK, Rogers-Graham K, Gilmer T, et al. The Ras/p120 GTPase-activating protein (GAP) interaction is regulated by the p120 GAP pleckstrin homology domain[J]. J Biol Chem, 2000, 275(45): 35021-35027. DOI: 10.1074/jbc.M004386200. [37] Evans DG, Bowers NL, Tobi S, et al. Schwannomatosis: a genetic and epidemiological study[J]. J Neurol Neurosurg Psychiatry, 2018, 89(11): 1215-1219. DOI: 10.1136/jnnp-2018-318538. [38] Hadfield KD, Newman WG, Bowers NL, et al. Molecular characterisation of SMARCB1 and NF2 in familial and sporadic schwannomatosis[J]. J Med Genet, 2008, 45(6): 332-339. DOI: 10.1136/jmg.2007.056499. [39] Nacak TG, Leptien K, Fellner D, et al. The BTB-kelch protein LZTR-1 is a novel golgi protein that is degraded upon induction of apoptosis[J]. J Biol Chem, 2006, 281(8): 5065-5071. DOI: 10.1074/jbc.M509073200. [40] Abe T, Umeki I, Kanno SI, et al. LZTR1 facilitates polyubiquitination and degradation of RAS-GTPases[J]. Cell Death Differ, 2020, 27(3): 1023-1035. DOI: 10.1038/s41418-019-0395-5. [41] Smith MJ, Isidor B, Beetz C, et al. Mutations in LZTR1 add to the complex heterogeneity of schwannomatosis[J]. Neurology, 2015, 84(2): 141-147. DOI: 10.1212/WNL.0000000000001129. [42] Motta M, Fidan M, Bellacchio E, et al. Dominant Noonan syndrome-causing LZTR1 mutations specifically affect the Kelch domain substrate-recognition surface and enhance RAS-MAPK signaling[J]. Hum Mol Genet, 2019, 28(6): 1007-1022. DOI: 10.1093/hmg/ddy412. [43] Nie Z, Xue Y, Yang D, et al. A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex[J]. Mol Cell Biol, 2000, 20(23): 8879-8888. DOI: 10.1128/MCB.20.23.8879- 8888.2000. [44] Narlikar GJ, Sundaramoorthy R, Owen-Hughes T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes[J]. Cell, 2013, 154(3): 490-503. DOI: 10.1016/j.cell.2013.07.011. [45] Manghera M, Douville RN. Endogenous retrovirus-K promoter: a landing strip for inflammatory transcription factors? [J] Retrovirology, 2013, 10: 16. DOI: 10.1186/1742-4690-10-16. [46] Cardelli M, Doorn RV, Larcher L, et al. Association of HERV-K and LINE-1 hypomethylation with reduced disease-free survival in melanoma patients[J]. Epigenomics, 2020, 12(19): 1689-1706. DOI: 10.2217/epi-2020-0127. [47] Doucet-O'Hare TT, DiSanza BL, DeMarino C, et al. SMARCB1 deletion in atypical teratoid rhabDOId tumors results in human endogenous retrovirus K (HML-2) expression[J]. Sci Rep, 2021, 11(1): 12893. DOI: 10.1038/s41598-021-92223-x. |
[1] | Li Nan, Cui Xiujuan, Ding Baijuan, Duan Chao, Shi Juanjuan. One case of misdiagnosed invasive fibroma on abdominal wall and literature review [J]. International Medicine and Health Guidance News, 2022, 28(9): 1209-1212. |
[2] | Pei Mengge, Li Guqiang. Treatment strategies for shoulder-hand syndrome after stroke [J]. International Medicine and Health Guidance News, 2022, 28(9): 1326-1329. |
[3] | Qin Shuipen. Current situation and research progress of clinical treatment of diabetic retinopathy [J]. International Medicine and Health Guidance News, 2022, 28(8): 1180-1184. |
[4] | Tian Jie, Jin Yu, Liu Suqin. Research progress of plastic bronchitis in children [J]. International Medicine and Health Guidance News, 2022, 28(6): 805-808. |
[5] | Xing Xiaoyun, Ma Lei. Research progress of PI3K/AKT signaling pathway in pathogenesis of psoriasis [J]. International Medicine and Health Guidance News, 2022, 28(5): 594-597. |
[6] | Gai Na, Liu Zhiqiang, Yu Wenjing, Yang Shihui. Research progress on relationship between forkhead box family and endometrial carcinoma [J]. International Medicine and Health Guidance News, 2022, 28(5): 699-701. |
[7] | Zhang Kun, Han Xia, Chen Shaoshui. Radiation induced lung injury: mechanism of occurrence and progress in prevention and treatment [J]. International Medicine and Health Guidance News, 2022, 28(24): 3494-. |
[8] | Chen Qu, Wang Xuebin. Research progress of immunomodulation in idiopathic membranous nephropathy and podocyte injury [J]. International Medicine and Health Guidance News, 2022, 28(20): 2902-2905. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||