[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. DOI: 10.3322/caac.21660.
[2] Matson V, Chervin CS, Gajewski TF. Cancer and the microbiome-influence of the commensal microbiota on cancer, immune responses, and immunotherapy[J]. Gastroenterology, 2021, 160(2):600-613. DOI: 10.1053/j.gastro.2020.11.041.
[3] Yang YL, Zhou WW, Wu S, et al. Intestinal flora is a key factor in insulin resistance and contributes to the development of polycystic ovary syndrome[J]. Endocrinology, 2021, 162(10):bqab118. DOI: 10.1210/endocr/bqab118.
[4] Tilg H, Adolph TE, Gerner RR, et al. The intestinal microbiota in colorectal cancer[J]. Cancer Cell, 2018, 33(6):954-964. DOI: 10.1016/j.ccell.2018.03.004.
[5] Garrett WS. The gut microbiota and colon cancer[J]. Science, 2019, 364(6446):1133-1135. DOI: 10.1126/science.aaw2367.
[6] Depoortere I. Taste receptors of the gut: emerging roles in health and disease[J]. Gut, 2014, 63(1):179-190. DOI: 10.1136/gutjnl-2013-305112.
[7] Perez-Lopez A, Behnsen J, Nuccio SP, et al. Mucosal immunity to pathogenic intestinal bacteria[J]. Nat Rev Immunol, 2016, 16(3):135-148. DOI: 10.1038/nri.2015.17.
[8] Karin M, Clevers H. Reparative inflammation takes charge of tissue regeneration[J]. Nature, 2016, 529(7586):307-315. DOI: 10.1038/nature17039.
[9] Mu C, Yang Y, Zhu W. Crosstalk between the immune receptors and gut microbiota[J]. Curr Protein Pept Sci, 2015, 16(7):622-631. DOI: 10.2174/1389203716666150630134356.
[10] Velloso LA, Folli F, Saad MJ. TLR4 at the crossroads of nutrients, gut microbiota, and metabolic inflammation[J]. Endocr Rev, 2015, 36(3):245-271. DOI: 10.1210/er.2014-1100.
[11] Seo SU, Kamada N, Muñoz-Planillo R, et al. Distinct commensals induce interleukin-1β via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury[J]. Immunity, 2015, 42(4):744-755. DOI: 10.1016/j.immuni.2015.03.004.
[12] Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system[J]. Nature, 2012, 489(7415):231-241. DOI: 10.1038/nature11551.
[13] Montalvillo E, Garrote JA, Bernardo D, et al. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system[J]. Rev Esp Enferm Dig, 2014, 106(5):334-345.
[14] Turroni F, Ventura M, Buttó LF, et al. Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective[J]. Cell Mol Life Sci, 2014, 71(2):183-203. DOI: 10.1007/s00018-013-1318-0.
[15] Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense[J]. Immunity, 2008, 29(6):958-970. DOI: 10.1016/j.immuni.2008.11.001.
[16] Johansson ME, Phillipson M, Petersson J, et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria[J]. Proc Natl Acad Sci U S A, 2008, 105(39):15064-15069. DOI: 10.1073/pnas.0803124105.
[17] Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses[J]. Nat Med, 2009, 15(9):1016-1022. DOI: 10.1038/nm.2015.
[18] Thiele Orberg E, Fan H, Tam AJ, et al. The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis[J]. Mucosal Immunol, 2017, 10(2):421-433. DOI: 10.1038/mi.2016.53.
[19] Chung L, Thiele Orberg E, Geis AL, et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells[J]. Cell Host Microbe, 2018, 23(2):203-214.e5. DOI: 10.1016/j.chom.2018.01.007.
[20] Kim JM, Oh YK, Kim YJ, et al. Polarized secretion of CXC chemokines by human intestinal epithelial cells in response to Bacteroides fragilis enterotoxin: NF-kappa B plays a major role in the regulation of IL-8 expression[J]. Clin Exp Immunol, 2001, 123(3):421-427. DOI: 10.1046/j.1365-2249.2001.01462.x.
[21] Zhang Y, Weng Y, Gan H, et al. Streptococcus gallolyticus conspires myeloid cells to promote tumorigenesis of inflammatory bowel disease[J]. Biochem Biophys Res Commun, 2018, 506(4):907-911. DOI: 10.1016/j.bbrc.2018.10.136.
[22] Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment[J]. Cell Host Microbe, 2013, 14(2):207-215. DOI: 10.1016/j.chom.2013.07.007.
[23] Long X, Wong CC, Tong L, et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity[J]. Nat Microbiol, 2019, 4(12):2319-2330. DOI: 10.1038/s41564-019-0541-3.
[24] Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack[J]. Immunity, 2015, 42(2):344-355. DOI: 10.1016/j.immuni.2015.01.010.
[25] Cremonesi E, Governa V, Garzon JFG, et al. Gut microbiota modulate T cell trafficking into human colorectal cancer[J]. Gut, 2018, 67(11):1984-1994. DOI: 10.1136/gutjnl-2016-313498.
[26] Thommen DS, Schumacher TN. T cell dysfunction in cancer[J]. Cancer Cell, 2018, 33(4):547-562. DOI: 10.1016/j.ccell.2018.03.012.
[27] Lavoie S, Chun E, Bae S, et al. Expression of free fatty acid receptor 2 by dendritic cells prevents their expression of interleukin 27 and is required for maintenance of mucosal barrier and immune response against colorectal tumors in mice[J]. Gastroenterology, 2020, 158(5):1359-1372.e9. DOI: 10.1053/j.gastro.2019.12.027.
[28] Grivennikov SI, Wang K, Mucida D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth[J]. Nature, 2012, 491(7423):254-258. DOI: 10.1038/nature11465.
[29] Wu P, Wu D, Ni C, et al. γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer[J]. Immunity, 2014, 40(5):785-800. DOI: 10.1016/j.immuni.2014.03.013.
[30] Ghoreschi K, Laurence A, Yang XP, et al. Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling[J]. Nature, 2010, 467(7318):967-971. DOI: 10.1038/nature09447.
[31] Couturier-Maillard A, Secher T, Rehman A, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer[J]. J Clin Invest, 2013, 123(2):700-711. DOI: 10.1172/JCI62236.
[32] Dejea CM, Wick EC, Hechenbleikner EM, et al. Microbiota organization is a distinct feature of proximal colorectal cancers[J]. Proc Natl Acad Sci U S A, 2014, 111(51):18321-18326. DOI: 10.1073/pnas.1406199111.
[33] Hu B, Elinav E, Huber S, et al. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer[J]. Proc Natl Acad Sci U S A, 2013, 110(24):9862-9867. DOI: 10.1073/pnas.1307575110.
[34] Dmitrieva-Posocco O, Dzutsev A, Posocco DF, et al. Cell-type-specific responses to interleukin-1 control microbial invasion and tumor-elicited inflammation in colorectal cancer[J]. Immunity, 2019, 50(1):166-180.e7. DOI: 10.1016/j.immuni.2018.11.015.
[35] Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3):548-563.e16. DOI: 10.1016/j.cell.2017.07.008.
|