[1] Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging[J]. Lancet Neurol, 2013,12(5):483-497. DOI: 10.1016/S1474-4422(13)70060-7.
[2] Smith EE, O'Donnell M, Dagenais G, et al. Early cerebral small vessel disease and brain volume, cognition, and gait[J]. Ann Neurol, 2015,77(2):251-261. DOI: 10.1002/ana.24320.
[3] van Agtmaal MJM, Houben AJHM, Pouwer F, et al. Association of microvascular dysfunction with late-life depression: a systematic review and meta-analysis[J]. JAMA Psychiatry, 2017,74(7):729-739. DOI: 10.1001/jamapsychiatry.2017.0984.
[4] Onteddu SR, Goddeau RP, Minaeian A, et al. Clinical impact of leukoaraiosis burden and chronological age on neurological deficit recovery and 90-day outcome after minor ischemic stroke[J]. J Neurol Sci, 2015,359(1-2):418-423. DOI: 10.1016/j.jns.2015.10.005.
[5] Förster A, Griebe M, Ottomeyer C, et al. Cerebral network disruption as a possible mechanism for impaired recovery after acute pontine stroke[J]. Cerebrovasc Dis, 2011,31(5):499-505. DOI: 10.1159/000324390.
[6] Thompson CS, Hakim AM. Living beyond our physiological means: small vessel disease of the brain is an expression of a systemic failure in arteriolar function: a unifying hypothesis[J]. Stroke, 2009,40(5):e322-330. DOI: 10.1161/STROKEAHA.108.542266.
[7] 王晓玲.CARASIL家系HTRA1突变基因与血管平滑肌细胞TGF-B信号通路的关系研究[D].上海:第二军医大学,2012.
[8] Oka C, Tsujimoto R, Kajikawa M, et al. HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins[J]. Development, 2004,131(5):1041-1053. DOI: 10.1242/dev.00999.
[9] Rahimi RA, Leof EB. TGF-beta signaling: a tale of two responses[J]. J Cell Biochem, 2007,102(3):593-608. DOI: 10.1002/jcb.21501.
[10] Beaufort N, Scharrer E, Kremmer E, et al. Cerebral small vessel disease-related protease HtrA1 processes latent TGF-β binding protein 1 and facilitates TGF-β signaling[J]. Proc Natl Acad Sci U S A, 2014,111(46):16496-16501. DOI: 10.1073/pnas.1418087111.
[11] Meyers EA, Kessler JA. TGF-β family signaling in neural and neuronal differentiation, development, and function[J]. Cold Spring Harb Perspect Biol, 2017,9(8):a022244. DOI: 10.1101/cshperspect.a022244.
[12] Krieglstein K. TGF-β in brain disorders//TGF-β in Human Disease[M]. Berlin: Springer, 2013.
[13] Zhang W, Rong G, Gu J, et al. Nicotinamide N-methyltransferase ameliorates renal fibrosis by its metabolite 1-methylnicotinamide inhibiting the TGF-β1/Smad3 pathway[J]. FASEB J, 2022,36(3):e22084. DOI: 10.1096/fj.202100913RRR.
[14] Kim KK, Sheppard D, Chapman HA. TGF-β1 signaling and tissue fibrosis[J]. Cold Spring Harb Perspect Biol, 2018,10(4):a022293. DOI: 10.1101/cshperspect.a022293.
[15] van der Kraan PM. The changing role of TGFβ in healthy, ageing and osteoarthritic joints[J]. Nat Rev Rheumatol, 2017,13(3):155-163. DOI: 10.1038/nrrheum.2016.219.
[16] Suwanabol PA, Seedial SM, Zhang F, et al. TGF-β and Smad3 modulate PI3K/Akt signaling pathway in vascular smooth muscle cells[J]. Am J Physiol Heart Circ Physiol, 2012,302(11):H2211-2219. DOI: 10.1152/ajpheart.00966.2011.
[17] Fasano A, Formichi P, Taglia I, et al. HTRA1 expression profile and activity on TGF-β signaling in HTRA1 mutation carriers[J]. J Cell Physiol, 2020,235(10):7120-7127. DOI: 10.1002/jcp.29609.
[18] Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling[J]. Nature, 2003,425(6958):577-584. DOI: 10.1038/nature02006.
[19] Hara K, Shiga A, Fukutake T, et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease[J]. N Engl J Med, 2009,360(17):1729-1739. DOI: 10.1056/NEJMoa0801560.
[20] 程智慧,蔡文玮,陆平,等.反义Smad3阻断TGF-β1信号转导对血管平滑肌细胞增殖能力的影响[J].上海交通大学学报(医学版),2009,29(8):935-938.
[21] ten Dijke P, Arthur HM. Extracellular control of TGFbeta signalling in vascular development and disease[J]. Nat Rev Mol Cell Biol, 2007,8(11):857-869. DOI: 10.1038/nrm2262.
[22] Poggesi A, Pasi M, Pescini F, et al. Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: a review[J]. J Cereb Blood Flow Metab, 2016,36(1):72-94. DOI: 10.1038/jcbfm.2015.116.
[23] Zhang CE, Wong SM, van de Haar HJ, et al. Blood-brain barrier leakage is more widespread in patients with cerebral small vessel disease[J]. Neurology, 2017,88(5):426-432. DOI: 10.1212/WNL.0000000000003556.
[24] Kast J, Hanecker P, Beaufort N, et al. Sequestration of latent TGF-β binding protein 1 into CADASIL-related Notch3-ECD deposits[J]. Acta Neuropathol Commun, 2014,2:96. DOI: 10.1186/s40478-014-0096-8.
[25] Monet-Leprêtre M, Haddad I, Baron-Menguy C, et al. Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL[J]. Brain, 2013,136 Pt 6:1830-1845. DOI: 10.1093/brain/awt092.
[26] Monet-Leprêtre M, Bardot B, Lemaire B, et al. Distinct phenotypic and functional features of CADASIL mutations in the Notch3 ligand binding domain[J]. Brain, 2009,132 Pt 6:1601-1612. DOI: 10.1093/brain/awp049.
[27] Kennard S, Liu H, Lilly B. Transforming growth factor-beta (TGF- 1) down-regulates Notch3 in fibroblasts to promote smooth muscle gene expression[J]. J Biol Chem, 2008,283(3):1324-1333. DOI: 10.1074/jbc.M706651200.
[28] Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease[J]. N Engl J Med, 2000,342(18):1350-1358. DOI: 10.1056/NEJM200005043421807.
[29] Onodera O. TGF-β family signaling contributes to human cerebral small vessel disease[J]. Rinsho Shinkeigaku, 2011,51(11):943-944. DOI: 10.5692/clinicalneurol. 51.943.
[30] Jin SF, Wang YX, Xu N, et al. High temperature requirement factor A1 (HTRA1) regulates the activation of latent TGF-β1 in keloid fibroblasts[J]. Cell Mol Biol (Noisy-le-grand), 2018,64(1):107-110. DOI: 10.14715/cmb/2018.64.2.19.
[31] Nozaki H, Kato T, Nihonmatsu M, Saito Y, et al. Distinct molecular mechanisms of HTRA1 mutants in manifesting heterozygotes with CARASIL[J]. Neurology, 2016,86(21):1964-1974. DOI: 10.1212/WNL.0000000000002694.
[32] Uemura M, Nozaki H, Kato T, et al. HTRA1-Related cerebral small vessel disease: a review of the literature[J]. Front Neurol, 2020,11:545. DOI: 10.3389/fneur.2020. 00545.
[33] Verdura E, Hervé D, Scharrer E, et al. Heterozygous HTRA1 mutations are associated with autosomal dominant cerebral small vessel disease[J]. Brain, 2015,138 Pt 8:2347-2358. DOI: 10.1093/brain/awv155.
[34] Rombach SM, Twickler TB, Aerts JM, et al. Vasculopathy in patients with Fabry disease: current controversies and research directions[J]. Mol Genet Metab, 2010,99(2):99-108. DOI: 10.1016/j.ymgme.2009.10.004.
[35] Eitzman DT, Bodary PF, Shen Y, et al. Fabry disease in mice is associated with age-dependent susceptibility to vascular thrombosis[J]. J Am Soc Nephrol, 2003,14(2):298-302. DOI: 10.1097/01.asn.0000043901.45141.d4.
[36] Sanchez-Niño MD, Sanz AB, Carrasco S, et al. Globotriaosylsphingosine actions on human glomerular podocytes: implications for Fabry nephropathy[J]. Nephrol Dial Transplant, 2011,26(6):1797-1802. DOI: 10.1093/ndt/gfq306.
|