International Medicine and Health Guidance News ›› 2024, Vol. 30 ›› Issue (8): 1316-1320.DOI: 10.3760/cma.j.issn.1007-1245.2024.08.018
• New Medical Advances • Previous Articles Next Articles
m6A and m5C methylation modification affects the initiation and development of cancers by regulating cellular proliferation and metastasis
Shao Shuang, Guo Jiwei, Meng Wei
Medical Research Center, Binzhou Medical University Hospital, Binzhou 256600, China
Received:
2023-10-07
Online:
2024-04-15
Published:
2024-05-05
Contact:
Meng Wei, Email: bymengwei2008@126.com
Supported by:
"Youth Innovation Science and Technology Plan" of Colleges and Universities in Shandong Province (2020KJK002); "Qilu Outstanding Young Talents in Health"
m6A及m5C甲基化修饰通过促进细胞增殖与转移影响癌症的发生和发展
邵爽 郭纪伟 孟玮
滨州医学院附属医院医学研究中心,滨州 256600
通讯作者:
孟玮,Email:bymengwei2008@126.com
基金资助:
山东省高等学校“青创科技计划”(2020KJK002);“齐鲁卫生与健康杰出青年人才”项目
Shao Shuang, Guo Jiwei, Meng Wei.
m6A and m5C methylation modification affects the initiation and development of cancers by regulating cellular proliferation and metastasis [J]. International Medicine and Health Guidance News, 2024, 30(8): 1316-1320.
邵爽 郭纪伟 孟玮.
m6A及m5C甲基化修饰通过促进细胞增殖与转移影响癌症的发生和发展 [J]. 国际医药卫生导报, 2024, 30(8): 1316-1320.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.imhgn.com/EN/10.3760/cma.j.issn.1007-1245.2024.08.018
[1] Dai X, Ren T, Zhang Y, et al. Methylation multiplicity and its clinical values in cancer[J]. Expert Rev Mol Med, 2021, 23:e2. DOI: 10.1017/erm.2021.4. [2] Uddin MB, Wang Z, Yang C. Dysregulations of functional RNA modifications in cancer, cancer stemness and cancer therapeutics[J]. Theranostics, 2020, 10(7):3164-3189. DOI: 10.7150/thno.41687. [3] Oerum S, Meynier V, Catala M, et al. A comprehensive review of m6A/m6Am RNA methyltransferase structures[J]. Nucleic Acids Res, 2021, 49(13):7239-7255. DOI: 10.1093/nar/gkab378. [4] Shao D, Li Y, Wu J, et al. An m6A/m5C/m1A/m7G-related long non-coding RNA signature to predict prognosis and immune features of glioma[J]. Front Genet, 2022, 13:903117. DOI: 10.3389/fgene.2022.903117. [5] Yang B, Wang JQ, Tan Y, et al. RNA methylation and cancer treatment[J]. Pharmacol Res, 2021, 174:105937. DOI: 10.1016/j.phrs.2021.105937. [6] Du B, Zhang Y, Liang M, et al. N6-methyladenosine (m6A) modification and its clinical relevance in cognitive dysfunctions[J]. Aging (Albany NY), 2021, 13(16):20716-20737. DOI: 10.18632/aging.203457. [7] Liu ZX, Li LM, Sun HL, et al. Link between m6A modification and cancers[J]. Front Bioeng Biotechnol, 2018, 6:89. DOI: 10.3389/fbioe.2018.00089. [8] Zhang T, Zhang SW, Zhang SY, et al. m6A-express: uncovering complex and condition-specific m6A regulation of gene expression[J]. Nucleic Acids Res, 2021, 49(20):e116. DOI: 10.1093/nar/gkab714. [9] Zeng C, Huang W, Li Y, et al. Roles of METTL3 in cancer: mechanisms and therapeutic targeting[J]. J Hematol Oncol, 2020, 13(1):117. DOI: 10.1186/s13045-020- 00951-w. [10] Wei J, Liu F, Lu Z, et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm[J]. Mol Cell, 2018, 71(6):973-985.e5. DOI: 10.1016/j.molcel.2018.08.011. [11] Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12):885-887. DOI: 10.1038/nchembio.687. [12] Azzam SK, Alsafar H, Sajini AA. FTO m6A demethylase in obesity and cancer: implications and underlying molecular mechanisms[J]. Int J Mol Sci, 2022, 23(7):3800. DOI: 10.3390/ijms23073800. [13] Qu J, Yan H, Hou Y, et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential[J]. J Hematol Oncol, 2022, 15(1):8. DOI: 10.1186/s13045- 022-01224-4. [14] Chen YG, Chen R, Ahmad S, et al. N6-methyladenosine modification controls circular RNA immunity[J]. Mol Cell, 2019, 76(1):96-109.e9. DOI: 10.1016/j.molcel.2019. 07.016. [15] Zaccara S, Jaffrey SR. A unified model for the function of YTHDF proteins in regulating m6A-modified mRNA[J]. Cell, 2020, 181(7):1582-1595.e18. DOI: 10.1016/j.cell.2020.05.012. [16] Xu Y, Zhang M, Zhang Q, et al. Role of main RNA methylation in hepatocellular carcinoma: N6-methyladenosine, 5-methylcytosine, and N1-methyladenosine[J]. Front Cell Dev Biol, 2021, 9:767668. DOI: 10.3389/fcell.2021.767668. [17] Yu G, Bao J, Zhan M, et al. Comprehensive analysis of m5C methylation regulatory genes and tumor microenvironment in prostate cancer[J]. Front Immunol, 2022, 13:914577. DOI: 10.3389/fimmu.2022.914577. [18] Hu Y, Chen C, Tong X, et al. NSUN2 modified by SUMO-2/3 promotes gastric cancer progression and regulates mRNA m5C methylation[J]. Cell Death Dis, 2021, 12(9):842. DOI: 10.1038/s41419-021-04127-3. [19] Chen YS, Yang WL, Zhao YL, et al. Dynamic transcriptomic m5 C and its regulatory role in RNA processing[J]. Wiley Interdiscip Rev RNA, 2021, 12(4):e1639. DOI: 10.1002/wrna.1639. [20] 张婷,王紫凌,郑永唐. RNA m5C修饰调控病毒复制的研究进展[J]. 科学通报,2022,67(31):3654-3666. DOI:10.1360/TB-2022-0461. [21] Yu FX, Guan KL. The Hippo pathway: regulators and regulations[J]. Genes Dev, 2013, 27(4):355-371. DOI: 10.1101/gad.210773.112. [22] Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: Hippo signaling and beyond[J]. Physiol Rev, 2014, 94(4):1287-1312. DOI: 10.1152/physrev.00005.2014. [23] Han Y. Analysis of the role of the Hippo pathway in cancer[J]. J Transl Med, 2019, 17(1):116. DOI: 10.1186/s12967- 019-1869-4. [24] Chamcheu JC, Roy T, Uddin MB, et al. Role and therapeutic targeting of the PI3K/Akt/mTOR signaling pathway in skin cancer: a review of current status and future trends on natural and synthetic agents therapy[J]. Cells, 2019, 8(8):803. DOI: 10.3390/cells8080803. [25] Wang J, Hu K, Cai X, et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis[J]. Acta Pharm Sin B, 2022, 12(1):18-32. DOI: 10.1016/j.apsb.2021.07.023. [26] Shariati M, Meric-Bernstam F. Targeting AKT for cancer therapy[J]. Expert Opin Investig Drugs, 2019, 28(11):977-988. DOI: 10.1080/13543784.2019.1676726. [27] Nitulescu GM, Van De Venter M, Nitulescu G, et al. The Akt pathway in oncology therapy and beyond (Review)[J]. Int J Oncol, 2018, 53(6):2319-2331. DOI: 10.3892/ijo.2018. 4597. [28] Clevers H, Nusse R. Wnt/β-catenin signaling and disease[J]. Cell, 2012, 149(6):1192-1205. DOI: 10.1016/j.cell. 2012.05.012. [29] Ji L, Lu B, Zamponi R, et al. USP7 inhibits Wnt/β-catenin signaling through promoting stabilization of Axin[J]. Nat Commun, 2019, 10(1):4184. DOI: 10.1038/s41467-019- 12143-3. [30] Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin[J]. EMBO J, 2012, 31(12):2714-2736. DOI: 10.1038/emboj.2012.150. [31] Pai SG, Carneiro BA, Mota JM, et al. Wnt/beta-catenin pathway: modulating anticancer immune response[J]. J Hematol Oncol, 2017, 10(1):101. DOI: 10.1186/s13045- 017-0471-6. [32] Guo YJ, Pan WW, Liu SB, et al. ERK/MAPK signalling pathway and tumorigenesis[J]. Exp Ther Med, 2020, 19(3):1997-2007. DOI: 10.3892/etm.2020.8454. [33] Plotnikov A, Zehorai E, Procaccia S, et al. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation[J]. Biochim Biophys Acta, 2011, 1813(9):1619-1633. DOI: 10.1016/j.bbamcr. 2010.12.012. [34] Lake D, Corrêa SA, Müller J. Negative feedback regulation of the ERK1/2 MAPK pathway[J]. Cell Mol Life Sci, 2016, 73(23):4397-4413. DOI: 10.1007/s00018-016-2297-8. [35] Zheng RS, Zhang SW, Sun KX, et al. [Cancer statistics in China, 2016][J]. Zhonghua Zhong Liu Za Zhi, 2023, 45(3):212-220. DOI: 10.3760/cma.j.cn112152-20220922- 00647. [36] Jin D, Guo J, Wu Y, et al. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC[J]. Mol Cancer, 2020, 19(1):40. DOI: 10.1186/s12943-020- 01161-1. [37] Lin S, Choe J, Du P, et al. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells[J]. Mol Cell, 2016, 62(3):335-345. DOI: 10.1016/j.molcel.2016.03.021. [38] Yu W, Zhang C, Wang Y, et al. YAP 5-methylcytosine modification increases its mRNA stability and promotes the transcription of exosome secretion-related genes in lung adenocarcinoma[J]. Cancer Gene Ther, 2023, 30(1):149-162. DOI: 10.1038/s41417-022-00533-7. [39] Cui X, Wang Z, Li J, et al. Cross talk between RNA N6-methyladenosine methyltransferase-like 3 and miR-186 regulates hepatoblastoma progression through Wnt/β-catenin signalling pathway[J]. Cell Prolif, 2020, 53(3):e12768. DOI: 10.1111/cpr.12768. [40] Liu L, Wang J, Sun G, et al. m6A mRNA methylation regulates CTNNB1 to promote the proliferation of hepatoblastoma[J]. Mol Cancer, 2019, 18(1):188. DOI: 10.1186/s12943-019-1119-7. [41] Chen SL, Liu LL, Wang CH, et al. Loss of RDM1 enhances hepatocellular carcinoma progression via p53 and Ras/Raf/ERK pathways[J]. Mol Oncol, 2020, 14(2):373-386. DOI: 10.1002/1878-0261.12593. [42] Lin X, Chai G, Wu Y, et al. RNA m6A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail[J]. Nat Commun, 2019, 10(1):2065. DOI: 10.1038/s41467-019-09865-9. [43] Zhang C, Zhang M, Ge S, et al. Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer[J]. Cancer Med, 2019, 8(10):4766-4781. DOI: 10.1002/cam4.2360. [44] Pi J, Wang W, Ji M, et al. YTHDF1 promotes gastric carcinogenesis by controlling translation of FZD7[J]. Cancer Res, 2021, 81(10):2651-2665. DOI: 10.1158/0008-5472.CAN-20-0066. [45] Guo C, Chu H, Gong Z, et al. HOXB13 promotes gastric cancer cell migration and invasion via IGF-1R upregulation and subsequent activation of PI3K/AKT/mTOR signaling pathway[J]. Life Sci, 2021, 278:119522. DOI: 10.1016/j.lfs.2021.119522. [46] Wang N, Huo X, Zhang B, et al. METTL3-Mediated ADAMTS9 suppression facilitates angiogenesis and carcinogenesis in gastric cancer[J]. Front Oncol, 2022, 12:861807. DOI: 10.3389/fonc.2022.861807. [47] Bai Y, Yang C, Wu R, et al. YTHDF1 regulates tumorigenicity and cancer stem cell-like activity in human colorectal carcinoma[J]. Front Oncol, 2019, 9:332. DOI: 10.3389/fonc.2019.00332. [48] Deng R, Cheng Y, Ye S, et al. m6A methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways[J]. Onco Targets Ther, 2019, 12:4391-4402. DOI: 10.2147/OTT.S201052. [49] Peng W, Li J, Chen R, et al. Upregulated METTL3 promotes metastasis of colorectal cancer via miR-1246/SPRED2/MAPK signaling pathway[J]. J Exp Clin Cancer Res, 2019, 38(1):393. DOI: 10.1186/s13046-019-1408-4. [50] Su J, Wu G, Ye Y, et al. NSUN2-mediated RNA 5-methylcytosine promotes esophageal squamous cell carcinoma progression via LIN28B-dependent GRB2 mRNA stabilization[J]. Oncogene, 2021, 40(39):5814- 5828. DOI: 10.1038/s41388-021-01978-0. [51] 杨诗敏,王充,张春晓,等.m5C甲基化在肿瘤中的调控机制和功能研究进展[J].现代肿瘤医学,2023,31(14):2732- 2737.DOI:10.3969/j.issn.1672-4992.2023.14.032. |
[1] |
Zeng Xianhu, Li Ming, Li Zilong, Xiang Xu, Tian Hui, Li Huizhu, Ma Longjie, Fang Xiaoli, Chen Li, Tang Ran.
Research progress on ulcerative colitis in traditional Chinese and western medicines [J]. International Medicine and Health Guidance News, 2024, 30(9): 1415-1418. |
[2] |
Gao Wenwen, Zhang Xiang, Wang Hong, Yin Yanhui.
New progress in treatment of intestinal bacterial overgrowth [J]. International Medicine and Health Guidance News, 2024, 30(9): 1418-1421. |
[3] |
Sun Xiao, Liu Chengxia, Wang Na, Hao Jiahui, Chu Linlin, Li Chengyu.
Relationship between putrescine and macrophage polarization in gastric "inflammatory carcinoma transformation" [J]. International Medicine and Health Guidance News, 2024, 30(9): 1426-1429. |
[4] |
Li Chun, Du Qiaoting, Liu Lingling.
Progress in treatment of primiparae with postpartum lactation deficiency [J]. International Medicine and Health Guidance News, 2024, 30(9): 1446-1449. |
[5] |
He Xiangqin, Yang Fang, Ding Guofeng.
Research progress of traditional Chinese patent medicine related liver injury [J]. International Medicine and Health Guidance News, 2024, 30(9): 1450-1453. |
[6] |
Yang Shoujuan, Zhang Haitao, Cui Mingli, Wang Jian, Li Yang, Cheng Yanli.
Research progress of Wnt signaling pathway in acute myocardial infarction [J]. International Medicine and Health Guidance News, 2024, 30(8): 1291-1296. |
[7] |
Zou Haozhen, Yang Jia, Xi Zhefan, Ji Rui, Dong Hua.
Advances in single-cell RNA sequencing in kidney disease [J]. International Medicine and Health Guidance News, 2024, 30(8): 1307-1311. |
[8] |
Zhao Bo, Li Siwei, Xing Tian, Gao Ping, Zhu Hongzhe, Li Min.
Research progress of TRPV1 channel in infectious diseases [J]. International Medicine and Health Guidance News, 2024, 30(7): 1057-1062. |
[9] |
Li Mengqi, Li Peng, Du Gangqiang, Sun Hongsuo, Zhang Kai.
Research progress on incidence rate and surgical treatment of long bone nonunion [J]. International Medicine and Health Guidance News, 2024, 30(7): 1062-1066. |
[10] |
Ding Jiawen, Li Na.
Research progress on ESBLs positive Klebsiella pneumoniae [J]. International Medicine and Health Guidance News, 2024, 30(7): 1071-1074. |
[11] |
Chen Xiaolin, Yang Zhen.
Research progress on the relevance of HR-HPV load and cervical precancerous lesions and cervical cancer [J]. International Medicine and Health Guidance News, 2024, 30(6): 932-935. |
[12] |
Zou Haozhen, Yang Jia, Xi Zhefan, Ji Rui, Dong Hua.
Advances in single-cell RNA sequencing in secondary nephrosis [J]. International Medicine and Health Guidance News, 2024, 30(6): 936-940. |
[13] |
Wang Yuwei, Li Rui, Liu Chao, Liang Kuixiang.
Research progress on diagnosis and prevention strategies of pregnancy associated venous thromboembolism [J]. International Medicine and Health Guidance News, 2024, 30(6): 940-945. |
[14] |
Wu Qiaoqiao.
Research progress in pre-anesthetic evaluation of elderly patients [J]. International Medicine and Health Guidance News, 2024, 30(6): 946-948. |
[15] |
Zheng Mei, Lu Ying, Mu Dawei.
Research progress on mechanism of ferroptosis in Alzheimer's disease [J]. International Medicine and Health Guidance News, 2024, 30(5): 705-709. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||