[1] 刘烨,王海宁. 2021年ADA/EASD«糖尿病缓解专家共识»与«2022年ADA糖尿病指南:2型糖尿病的预防和治疗中肥胖与体重管理»解读——糖尿病缓解的定义与治疗策略[J]. 临床内科杂志,2022,39(5):299-302. DOI: 10.3969/j.issn.1001-9057.2022.05.003.
[2] Cui Y, Tang TY, Lu CQ, et al. Disturbed interhemispheric functional and structural connectivity in type 2 diabetes [J]. J Magn Reson Imaging, 2022, 55(2): 424-434. DOI: 10.1002/jmri.27813.
[3] Biessels GJ, Nobili F, Teunissen CE, et al. Understanding multifactorial brain changes in type 2 diabetes: a biomarker perspective [J]. Lancet Neurol, 2020, 19(8):699-710. DOI: 10.1016/S1474-4422(20)30139-3.
[4] 史安平,于瀛,胡博. 2型糖尿病大脑结构及功能MRI研究进展[J]. 实用放射学杂志,2022,38(4):673-675,681. DOI: 10.3969/j.issn.1002-1671.2022.04.038.
[5] 吴孟娜,冯磊,罗旋,等.糖化血红蛋白与血糖的相关性[J].中国老年学杂志, 2022,42(4):1019-1023. DOI:10.3969/j.issn.1005-9202.2022.04.068.
[6] 陈蜜蜜,周善磊,刘福军,等. 2型糖尿病患者血糖变异性与脑结构及认知功能的相关性研究[J]. 磁共振成像,2021,12(11):46-51. DOI: 10.12015/issn.1674-8034. 2021.11.010.
[7] Garfield V, Farmaki AE, Fatemifar G, et al. Relationship between glycemia and cognitive function, structural brain outcomes, and dementia: a mendelian randomization study in the UK Biobank [J]. Diabetes, 2021, 70(10): 2313-2321. DOI: 10.2337/db20-0895.
[8] 张东升,严雪娇,张小玲,等.2型糖尿病合并高血压对脑结构联合损伤效应的VBM研究[J].中国临床医学影像杂志, 2019, 30(11):765-768. DOI: 10.12117/jccmi.2019.11.002.
[9] 沈善昌,钟晓飞,杨明瑞,等. 2型糖尿病患者大脑结构和功能改变相关性的功能磁共振成像研究[J]. 实用放射学杂志,2020,36(10):1548-1552. DOI: 10.3969/j.issn.1002-1671. 2020.10.005.
[10] Liu J, Liu T, Wang W, et al. Reduced gray matter volume in patients with type 2 diabetes mellitus [J]. Front Aging Neurosci, 2017, 9: 161. DOI: 10.3389/fnagi.2017.00161.
[11] 钟远,贾伟平. 糖化血红蛋白与2型糖尿病早期认知功能减退的相关性研究[J]. 中国老年保健医学,2005,3(4):23-25. DOI: 10.3969/j.issn.1672-4860-B.2005.04.008.
[12] Wu G, Lin L, Zhang Q, Wu J. Brain gray matter changes in type 2 diabetes mellitus: a meta-analysis of whole-brain voxel-based morphometry study [J]. J Diabetes Complications, 2017, 31(12): 1698-1703. DOI: 10.1016/j.jdiacomp.2017.09.001.
[13] 杨敏慧,杨国帅,林红,等.基于体素形态学分析糖尿病周围神经病患者脑灰质体积的变化[J].中国医师杂志, 2022, 24(4):543-546. DOI: 10.3760/cma.j.cn431274- 20210606- 00624.
[14] 刘佳妮,张雯,倪文煜,等.基于ROI的体积测量和基于顶点的形态学分析对2型糖尿病患者皮层下灰质核团形态改变及其与认知障碍的相关性研究[J].中国临床医学影像杂志2021, 32(10): 685-691. DOI: 10.12117/jccmi.2021. 10.001.
[15] 孟凡华,孙田歌,胡绮莉,等. 2型糖尿病患者血糖波动与海马体积萎缩相关性的MR研究[J]. 同济大学学报(医学版),2021,42(5):645-651. DOI: 10.12289/j.issn.1008- 0392.21071.
[16] Andreau JM, Funahashi S. Prefrontal neuronal activities during active retrieval of information from long-term memory[J].J Psychophysiol, 2022, 37(1): 39-49. DOI: 10.1027/0269-8803/a000306.
[17] Mielke M, Reisch LM, Mehlmann A, et al. Right medial temporal lobe structures particularly impact early stages of affective picture processing [J]. Hum Brain Mapp, 2022, 43(2): 787-798. DOI: 10.1002/hbm.25687.
[18] Humphreys GF, Jung J, Lambon Ralph MA. The convergence and divergence of episodic and semantic functions across lateral parietal cortex [J]. Cereb Cortex, 2022, 32(24): 5664-5681. DOI: 10.1093/cercor/bhac044.
[19] Zhang W, Gao C, Qing Z, et al. Hippocampal subfields atrophy contribute more to cognitive impairment in middle-aged patients with type 2 diabetes rather than microvascular lesions [J]. Acta Diabetol, 2021, 58(8): 1023-1033. DOI: 10.1007/s00592-020-01670-x.
[20] 杨英亮,孙春燕,夏新建,等. 2型糖尿病患者大脑皮质厚度分布规律及其与糖化血红蛋白的相关性研究[J]. 国际医药卫生导报,2023,29(7):952-956. DOI: 10.3760/cma.j.issn.1007-1245.2023.07.015.
[21] Li C, Li C, Yang Q, et al. Cortical thickness contributes to cognitive heterogeneity in patients with type 2 diabetes mellitus [J]. Medicine (Baltimore), 2018, 97(21): e10858. DOI: 10.1097/MD.0000000000010858.
[22] 陈志晔,李金锋,孙杰,等. 2型糖尿病患者大脑皮层变薄及胰岛素治疗恢复效应观察[J]. 中华医学杂志,2013,93(17):1313-1317. DOI: 10.3760/cma.j.issn.0376-2491. 2013.17.010.
[23] 高亮.阿尔茨海默病中高血压对大脑皮层厚度和认知功能的影响[D].兰州:兰州大学,2013.
[24] Drummen M, Heinecke A, Dorenbos E, et al. Reductions in body weight and insulin resistance are not associated with changes in grey matter volume or cortical thickness during the PREVIEW study [J]. J Neurol Sci, 2019, 403: 106-111. DOI: 10.1016/j.jns.2019.06.017.
[25] 夏新建,王辉,李宁.应用MRI探究2型糖尿病患者大脑皮质微结构改变[J].中文科技期刊数据库(全文版)医药卫生,2021(10): 4-6.
[26] 李素芬,石节丽,李瑞霞,等. 糖尿病微血管病变与2型糖尿病病程及糖化血红蛋白的关系[J]. 实用临床医学,2016,17(1):10-13. DOI: 10.13764/j.cnki.lcsy.2016.01.003.
[27] Sanjari Moghaddam H, Ghazi Sherbaf F, Aarabi MH. Brain microstructural abnormalities in type 2 diabetes mellitus: a systematic review of diffusion tensor imaging studies [J]. Front Neuroendocrinol, 2019, 55: 100782. DOI: 10.1016/j.yfrne.2019.100782.
[28] Cui Y, Tang TY, Lu CQ, et al. Abnormal cingulum bundle induced by type 2 diabetes mellitus: a diffusion tensor tractography study [J]. Front Aging Neurosci, 2020, 12:594198. DOI: 10.3389/fnagi.2020.594198.
[29] 秦新, 鲁毅, 孙学进.2型糖尿病脑白质微结构网络拓扑结构改变的相关研究[J]. 放射学实践,2020,35(1):32-39. DOI: 10.13609/j.cnki.1000-0313.2020.01.007.
[30] Zhou C, Li J, Dong M, et al. Altered white matter microstructures in type 2 diabetes mellitus: a coordinate-based meta-analysis of diffusion tensor imaging studies [J]. Front Endocrinol (Lausanne), 2021, 12: 658198. DOI: 10.3389/fendo.2021.658198.
[31] Grosu S, Lorbeer R, Hartmann F, et al. White matter hyperintensity volume in pre-diabetes, diabetes and normoglycemia [J]. BMJ Open Diabetes Res Care, 2021, 9(1): e002050. DOI: 10.1136/bmjdrc-2020-002050.
[32] 李涛,王振松,刘建宪,等. ASL技术对2型糖尿病患者脑皮层血流的初步研究[J]. 医学影像学杂志,2022,32(4):558-561.
[33] 王振松,张爱英,魏巍巍,等.3D-pCASL对无认知障碍2型糖尿病患者全脑血流的初步研究[J]. 医学影像学杂志,2019,29(7):1081-1084.
[34] Xia W, Rao H, Spaeth AM, et al. Blood pressure is associated with cerebral blood flow alterations in patients with T2DM as revealed by perfusion functional MRI [J]. Medicine (Baltimore), 2015, 94(48): e2231. DOI: 10.1097/MD.0000000000002231.
[35] Tan X, Liang Y, Zeng H, et al. Altered functional connectivity of the posterior cingulate cortex in type 2 diabetes with cognitive impairment [J]. Brain Imaging Behav, 2019, 13(6): 1699-1707. DOI: 10.1007/s11682- 018-0017-8.
[36] 刘莎莎,张东升,雷雨萌,等.不伴认知功能障碍的2型糖尿病患者功能连接密度改变的研究[J]. 影像诊断与介入放射学,2021,30(5):337-341. DOI:10.3969/j.issn.1005-8001. 2021.05.003.
[37] 王琴.2型糖尿病患者脑电图特点的分析与研究[J]. 饮食保健,2018,5(35):246. DOI:10.3969/j.issn.2095-8439. 2018.35.325.
[38] 刘琳,陈北洋,曾小金.动态血糖监测与脑电图监测在新生儿低血糖脑损伤中的应用研究[J].中文科技期刊数据库(引文版)医药卫生,2021(10):344-345.
[39] Wen D, Zhou Y, Li P, et al. Resting-state EEG signal classification of amnestic mild cognitive impairment with type 2 diabetes mellitus based on multispectral image and convolutional neural network [J]. J Neural Eng, 2020, 17(3): 036005. DOI: 10.1088/1741-2552/ab8b7b.
|