International Medicine and Health Guidance News ›› 2023, Vol. 29 ›› Issue (7): 903-909.DOI: 10.3760/cma.j.issn.1007-1245.2023.07.004
• New Medical Advances • Previous Articles Next Articles
Role of microRNAs in colorectal inflammatory cancer transformation
Geng Song, Lu Qingjun, Ren Xiang, Jiang Hong
Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou 256000, China
Received:
2022-11-30
Online:
2023-04-01
Published:
2023-04-28
Contact:
Jiang Hong, Email: byfyjzcjh@126.com
Supported by:
Project of "Research on Clinical Application Norms of Minimally Invasive Surgery" of the Science and Technology Development Center of the National Health Commission (WA2021RW12); Binzhou Medical University "Clinical+X" Project (BY2021LCX21); Scientific Research Plan and Research Initiation Fund Project of Binzhou Medical University (BY2019KYQD42, BY2019KJ11)
MicroRNAs在结直肠炎癌转化过程中的作用
耿松 卢清军 任翔 蒋宏
滨州医学院附属医院结直肠疝外科,滨州 256000
通讯作者:
蒋宏,Email:byfyjzcjh@126.com
基金资助:
国家卫生健康委科技发展中心“微创手术临床应用规范化研究”课题(WA2021RW12);滨州医学院“临床+X”项目(BY2021LCX21);滨州医学院科研计划与科研启动基金项目(BY2019KYQD42、BY2019KJ11)
Geng Song, Lu Qingjun, Ren Xiang, Jiang Hong.
Role of microRNAs in colorectal inflammatory cancer transformation [J]. International Medicine and Health Guidance News, 2023, 29(7): 903-909.
耿松 卢清军 任翔 蒋宏.
MicroRNAs在结直肠炎癌转化过程中的作用 [J]. 国际医药卫生导报, 2023, 29(7): 903-909.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.imhgn.com/EN/10.3760/cma.j.issn.1007-1245.2023.07.004
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. DOI: 10.3322/caac.21660. [2] Grillo TG, Quaglio AEV, Beraldo RF, et al. MicroRNA expression in inflammatory bowel disease-associated colorectal cancer[J]. World J Gastrointest Oncol, 2021, 13(9):995-1016. DOI: 10.4251/wjgo.v13.i9.995. [3] Kobayashi T, Siegmund B, Le Berre C, et al. Ulcerative colitis[J]. Nat Rev Dis Primers, 2020, 6(1):74. DOI: 10.1038/s41572-020-0205-x. [4] Muthusami S, Ramachandran I, Krishnamoorthy S, et al. Regulation of microRNAs in inflammation-associated colorectal cancer: a mechanistic approach[J]. Endocr Metab Immune Disord Drug Targets, 2021, 21(1):67-76. DOI: 10.2174/1871530320666200917112802. [5] Lu TX, Rothenberg ME. MicroRNA[J]. J Allergy Clin Immunol, 2018, 141(4):1202-1207. DOI: 10.1016/j.jaci.2017.08.034. [6] Ali SR, Humphreys KJ, Simpson KJ, et al. Functional high-throughput screen identifies microRNAs that promote butyrate-induced death in colorectal cancer cells[J]. Mol Ther Nucleic Acids, 2022, 30:30-47. DOI: 10.1016/j.omtn.2022.08.037. [7] Toiyama Y, Okugawa Y, Tanaka K, et al. A panel of methylated microRNA biomarkers for identifying high-risk patients with ulcerative colitis-associated colorectal cancer[J]. Gastroenterology, 2017, 153(6):1634-1646.e8. DOI: 10.1053/j.gastro.2017.08.037. [8] Yuan W, Guo YQ, Li XY, et al. MicroRNA-126 inhibits colon cancer cell proliferation and invasion by targeting the chemokine (C-X-C motif) receptor 4 and Ras homolog gene family, member A, signaling pathway[J]. Oncotarget, 2016, 7(37):60230-60244. DOI: 10.18632/oncotarget.11176. [9] Wu S, Yuan W, Luo W, et al. miR-126 downregulates CXCL12 expression in intestinal epithelial cells to suppress the recruitment and function of macrophages and tumorigenesis in a murine model of colitis-associated colorectal cancer[J]. Mol Oncol, 2022, 16(19):3465-3489. DOI: 10.1002/1878-0261.13218. [10] Wu MY, Luo YX, Jia WX, et al. miRNA-320 inhibits colitis-associated colorectal cancer by regulating the IL-6R/STAT3 pathway in mice[J]. J Gastrointest Oncol, 2022, 13(2):695-709. DOI: 10.21037/jgo-22-237. [11] Sun JY, Huang Y, Li JP, et al. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting β-catenin[J]. Biochem Biophys Res Commun, 2012, 420(4):787-792. DOI: 10.1016/j.bbrc.2012.03.075. [12] Pierdomenico M, Cesi V, Cucchiara S, et al. NOD2 is regulated by mir-320 in physiological conditions but this control is altered in inflamed tissues of patients with inflammatory bowel disease[J]. Inflamm Bowel Dis, 2016, 22(2):315-326. DOI: 10.1097/MIB.0000000000000659. [13] Chen Y, Song YX, Wang ZN. The microRNA-148/152 family: multi-faceted players[J]. Mol Cancer, 2013, 12:43. DOI: 10.1186/1476-4598-12-43. [14] Zhu Y, Gu L, Li Y, et al. miR-148a inhibits colitis and colitis-associated tumorigenesis in mice[J]. Cell Death Differ, 2017, 24(12):2199-2209. DOI: 10.1038/cdd.2017.151. [15] Tang K, Wu Z, Sun M, et al. Elevated MMP10/13 mediated barrier disruption and NF-κB activation aggravate colitis and colon tumorigenesis in both individual or full miR-148/152 family knockout mice[J]. Cancer Lett, 2022, 529:53-69. DOI: 10.1016/j.canlet.2021.12.033. [16] Sathyanarayanan A, Chandrasekaran KS, Karunagaran D. microRNA-146a inhibits proliferation, migration and invasion of human cervical and colorectal cancer cells[J]. Biochem Biophys Res Commun, 2016, 480(4):528-533. DOI: 10.1016/j.bbrc.2016.10.054. [17] Garo LP, Ajay AK, Fujiwara M, et al. MicroRNA-146a limits tumorigenic inflammation in colorectal cancer[J]. Nat Commun, 2021, 12(1):2419. DOI: 10.1038/s41467-021- 22641-y. [18] Wang J, Pei B, Yan J, et al. hucMSC-derived exosomes alleviate the deterioration of colitis via the miR-146a/SUMO1 axis[J]. Mol Pharm, 2022, 19(2):484-493. DOI: 10.1021/acs.molpharmaceut.1c00450. [19] Wei Y, Shao J, Wang Y, et al. Hsa-miR-370 inhibited P-selectin-induced cell adhesion in human colon adenocarcinoma cells[J]. Mol Cell Biochem, 2019, 450(1-2):159-166. DOI: 10.1007/s11010-018-3382-0. [20] Lin L, Wang D, Qu S, et al. miR-370-3p alleviates ulcerative colitis-related colorectal cancer in mice through inhibiting the inflammatory response and epithelial-mesenchymal transition[J]. Drug Des Devel Ther, 2020, 14:1127-1141. DOI: 10.2147/DDDT.S238124. [21] Kesharwani SS, Ahmad R, Bakkari MA, et al. Site-directed non-covalent polymer-drug complexes for inflammatory bowel disease (IBD): formulation development, characterization and pharmacological evaluation[J]. J Control Release, 2018, 290:165-179. DOI: 10.1016/j.jconrel.2018.08.004. [22] Montalto FI, De Amicis F. Cyclin D1 in cancer: a molecular connection for cell cycle control, adhesion and invasion in tumor and stroma[J]. Cells, 2020, 9(12):2648. DOI: 10.3390/cells9122648. [23] Brocato J, Costa M. SATB1 and 2 in colorectal cancer[J]. Carcinogenesis, 2015, 36(2):186-191. DOI: 10.1093/carcin/bgu322. [24] Sun X, Liu S, Chen P, et al. miR-449a inhibits colorectal cancer progression by targeting SATB2[J]. Oncotarget, 2016, 8(60):100975-100988. DOI: 10.18632/oncotarget. 10900. [25] Feng Y, Dong YW, Song YN, et al. MicroRNA‑449a is a potential predictor of colitis‑associated colorectal cancer progression[J]. Oncol Rep, 2018, 40(3):1684-1694. DOI: 10.3892/or.2018.6566. [26] Lv Z, Wei J, You W, et al. Disruption of the c-Myc/miR-200b-3p/PRDX2 regulatory loop enhances tumor metastasis and chemotherapeutic resistance in colorectal cancer[J]. J Transl Med, 2017, 15(1):257. DOI: 10.1186/s12967-017-1357-7. [27] Chen L, Wang X, Zhu Y, et al. miR‑200b‑3p inhibits proliferation and induces apoptosis in colorectal cancer by targeting Wnt1[J]. Mol Med Rep, 2018, 18(3):2571-2580. DOI: 10.3892/mmr.2018.9287. [28] Hedl M, Yan J, Abraham C. IRF5 and IRF5 disease-risk variants increase glycolysis and human M1 macrophage polarization by regulating proximal signaling and Akt2 activation[J]. Cell Rep, 2016, 16(9):2442-2455. DOI: 10.1016/j.celrep.2016.07.060. [29] Deng S, Wang H, Fan H, et al. Over-expressed miRNA-200b ameliorates ulcerative colitis-related colorectal cancer in mice through orchestrating epithelial-mesenchymal transition and inflammatory responses by channel of AKT2[J]. Int Immunopharmacol, 2018, 61:346-354. DOI: 10.1016/j.intimp.2018.06.024. [30] Mamoori A, Wahab R, Islam F, et al. Clinical and biological significance of miR-193a-3p targeted KRAS in colorectal cancer pathogenesis[J]. Hum Pathol, 2018, 71:145-156. DOI: 10.1016/j.humpath.2017.10.024. [31] Takahashi H, Takahashi M, Ohnuma S, et al. microRNA-193a-3p is specifically down-regulated and acts as a tumor suppressor in BRAF-mutated colorectal cancer[J]. BMC Cancer, 2017, 17(1):723. DOI: 10.1186/s12885-017-3739-x. [32] Pekow J, Meckel K, Dougherty U, et al. miR-193a-3p is a key tumor suppressor in ulcerative colitis-associated colon cancer and promotes carcinogenesis through upregulation of IL17RD[J]. Clin Cancer Res, 2017, 23(17):5281-5291. DOI: 10.1158/1078-0432.CCR-17-0171. [33] Dai X, Chen X, Chen Q, et al. MicroRNA-193a-3p reduces intestinal inflammation in response to microbiota via down-regulation of colonic PepT1[J]. J Biol Chem, 2015, 290(26):16099-16115. DOI: 10.1074/jbc.M115.659318. [34] Shen K, Liang Q, Xu K, et al. MiR-139 inhibits invasion and metastasis of colorectal cancer by targeting the type I insulin-like growth factor receptor[J]. Biochem Pharmacol, 2012, 84(3):320-330. DOI: 10.1016/j.bcp.2012.04.017. [35] Zou F, Mao R, Yang L, et al. Targeted deletion of miR-139-5p activates MAPK, NF-κB and STAT3 signaling and promotes intestinal inflammation and colorectal cancer[J]. FEBS J, 2016, 283(8):1438-1452. DOI: 10.1111/febs.13678. [36] Maoa R, Zou F, Yang L, et al. The loss of MiR-139-5p promotes colitis-associated tumorigenesis by mediating PI3K/AKT/Wnt signaling[J]. Int J Biochem Cell Biol, 2015, 69:153-161. DOI: 10.1016/j.biocel.2015.10.008. [37] Qin Z, Liu X. miR-124, a potential therapeutic target in colorectal cancer[J]. Onco Targets Ther, 2019, 12:749-751. DOI: 10.2147/OTT.S179501. [38] Polytarchou C, Hommes DW, Palumbo T, et al. MicroRNA214 is associated with progression of ulcerative colitis, and inhibition reduces development of colitis and colitis-associated cancer in mice[J]. Gastroenterology, 2015, 149(4):981-992.e11. DOI: 10.1053/j.gastro.2015. 05.057. [39] Taniguchi K, Sugito N, Kumazaki M, et al. Positive feedback of DDX6/c-Myc/PTB1 regulated by miR-124 contributes to maintenance of the Warburg effect in colon cancer cells[J]. Biochim Biophys Acta, 2015, 1852(9):1971-1980. DOI: 10.1016/j.bbadis.2015.06.022. [40] Atreya R, Neurath MF. Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer[J]. Clin Rev Allergy Immunol, 2005, 28(3):187-196. DOI: 10.1385/CRIAI:28:3:187. [41] Zhang J, Lu Y, Yue X, et al. MiR-124 suppresses growth of human colorectal cancer by inhibiting STAT3[J]. PLoS One, 2013, 8(8):e70300. DOI: 10.1371/journal.pone.0070300. [42] Qin Z, Wan JJ, Sun Y, et al. Nicotine protects against DSS colitis through regulating microRNA-124 and STAT3[J]. J Mol Med (Berl), 2017, 95(2):221-233. DOI: 10.1007/s00109-016-1473-5. [43] Lu X, Yu Y, Tan S. The role of the miR-21-5p-mediated inflammatory pathway in ulcerative colitis[J]. Exp Ther Med, 2020, 19(2):981-989. DOI: 10.3892/etm.2019.8277. [44] Yan H, Zhang X, Xu Y. Aberrant expression of miR-21 in patients with inflammatory bowel disease: a protocol for systematic review and meta analysis[J]. Medicine (Baltimore), 2020, 99(17):e19693. DOI: 10.1097/MD.0000000000019693. [45] Shi C, Yang Y, Xia Y, et al. Novel evidence for an oncogenic role of microRNA-21 in colitis-associated colorectal cancer[J]. Gut, 2016, 65(9):1470-1481. DOI: 10.1136/gutjnl-2014-308455. [46] Wu F, Dong F, Arendovich N, et al. Divergent influence of microRNA-21 deletion on murine colitis phenotypes[J]. Inflamm Bowel Dis, 2014, 20(11):1972-1985. DOI: 10.1097/MIB.0000000000000201. [47] Liu Y, Zhu F, Li H, et al. MiR-155 contributes to intestinal barrier dysfunction in DSS-induced mice colitis via targeting HIF-1α/TFF-3 axis[J]. Aging (Albany NY), 2020, 12(14):14966-14977. DOI: 10.18632/aging.103555. [48] Svrcek M, El-Murr N, Wanherdrick K, et al. Overexpression of microRNAs-155 and 21 targeting mismatch repair proteins in inflammatory bowel diseases[J]. Carcinogenesis, 2013, 34(4):828-834. DOI: 10.1093/carcin/bgs408. [49] Guo J, Liao M, Wang J. TLR4 signaling in the development of colitis-associated cancer and its possible interplay with microRNA-155[J]. Cell Commun Signal, 2021, 19(1):90. DOI: 10.1186/s12964-021-00771-6. [50] Sun D, Yu F, Ma Y, et al. MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1)[J]. J Biol Chem, 2013, 288(13):9508-9518. DOI: 10.1074/jbc.M112.367763. [51] Gwiggner M, Martinez-Nunez RT, Whiteoak SR, et al. MicroRNA-31 and microRNA-155 are overexpressed in ulcerative colitis and regulate IL-13 signaling by targeting interleukin 13 receptor α-1[J]. Genes (Basel), 2018, 9(2):85. DOI: 10.3390/genes9020085. [52] Shi T, Xie Y, Fu Y, et al. The signaling axis of microRNA-31/interleukin-25 regulates Th1/Th17-mediated inflammation response in colitis[J]. Mucosal Immunol, 2017, 10(4):983-995. DOI: 10.1038/mi.2016.102. [53] Tian Y, Xu J, Li Y, et al. MicroRNA-31 reduces inflammatory signaling and promotes regeneration in colon epithelium, and delivery of mimics in microspheres reduces colitis in mice[J]. Gastroenterology, 2019, 156(8):2281-2296.e6. DOI: 10.1053/j.gastro.2019.02.023. [54] Song Y, Jiang K, Wang BM, et al. miR‑31 promotes tumorigenesis in ulcerative colitis‑associated neoplasia via downregulation of SATB2[J]. Mol Med Rep, 2020, 22(6):4801-4809. DOI: 10.3892/mmr.2020.11573. [55] Olive V, Bennett MJ, Walker JC, et al. miR-19 is a key oncogenic component of mir-17-92[J]. Genes Dev, 2009, 23(24):2839-2849. DOI: 10.1101/gad.1861409. [56] Chen B, She S, Li D, et al. Role of miR-19a targeting TNF-α in mediating ulcerative colitis[J]. Scand J Gastroenterol, 2013, 48(7):815-824. DOI: 10.3109/00365521.2013. 800991. [57] Wang T, Xu X, Xu Q, et al. miR-19a promotes colitis-associated colorectal cancer by regulating tumor necrosis factor alpha-induced protein 3-NF-κB feedback loops[J]. Oncogene, 2017, 36(23):3240-3251. DOI: 10.1038/onc.2016.468. [58] Zhang L, Li J, Wang Q, et al. The relationship between microRNAs and the STAT3-related signaling pathway in cancer[J]. Tumour Biol, 2017, 39(7):1010428317719869. DOI: 10.1177/1010428317719869. [59] Ma J, Yang Y, Fu Y, et al. PIAS3-mediated feedback loops promote chronic colitis-associated malignant transformation[J]. Theranostics, 2018, 8(11):3022-3037. DOI: 10.7150/thno.23046. [60] Liu L, Nie J, Chen L, et al. The oncogenic role of microRNA-130a/301a/454 in human colorectal cancer via targeting Smad4 expression[J]. PLoS One, 2013, 8(2):e55532. DOI: 10.1371/journal.pone.0055532. [61] Fang Y, Sun B, Xiang J, et al. MiR-301a promotes colorectal cancer cell growth and invasion by directly targeting SOCS6[J]. Cell Physiol Biochem, 2015, 35(1):227-236. DOI: 10.1159/000369690. [62] Zhang W, Zhang T, Jin R, et al. MicroRNA-301a promotes migration and invasion by targeting TGFBR2 in human colorectal cancer[J]. J Exp Clin Cancer Res, 2014, 33(1):113. DOI: 10.1186/s13046-014-0113-6. [63] He C, Yu T, Shi Y, et al. MicroRNA 301A promotes intestinal inflammation and colitis-associated cancer development by inhibiting BTG1[J]. Gastroenterology, 2017, 152(6):1434-1448.e15. DOI: 10.1053/j.gastro.2017.01.049. [64] Yang Y, Bao Y, Yang GK, et al. MiR-214 sensitizes human colon cancer cells to 5-FU by targeting Hsp27[J]. Cell Mol Biol Lett, 2019, 24:22. DOI: 10.1186/s11658-019-0143-3. [65] Sun R, Liu Z, Han L, et al. miR-22 and miR-214 targeting BCL9L inhibit proliferation, metastasis, and epithelial-mesenchymal transition by down-regulating Wnt signaling in colon cancer[J]. FASEB J, 2019, 33(4):5411-5424. DOI: 10.1096/fj.201801798RR. [66] Chen DL, Wang ZQ, Zeng ZL, et al. Identification of microRNA-214 as a negative regulator of colorectal cancer liver metastasis by way of regulation of fibroblast growth factor receptor 1 expression[J]. Hepatology, 2014, 60(2):598-609. DOI: 10.1002/hep.27118. |
[1] |
Wang Ningning, Lin Jiakai, Luo Xiaoyan, Sun Bin.
Associated microRNAs in patients with acute lung injury caused by sepsis [J]. International Medicine and Health Guidance News, 2023, 29(4): 456-460. |
[2] | Wang Haokun, Wang Aili, Yan Da, Wang Na, Liu Chengxia. Research progress of propolis in inflammatory bowel disease [J]. International Medicine and Health Guidance News, 2022, 28(2): 158-162. |
[3] | Xu Ruixue, Li Qiongyu, Lian Haifeng. Role of brain-derived neurotrophic factor in inflammatory bowel disease [J]. International Medicine and Health Guidance News, 2022, 28(19): 2694-2699. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||