[1] Akers JL, Dupnick AC, Hillman EL, et al. Inadvertent perioperative hypothermia risks and postoperative complications: a retrospective study[J]. AORN J, 2019,109(6):741-747. DOI: 10.1002/aorn.12696.
[2] Ribeiro E, Ferreira RC, Montanari FL, et al. Conceptual and operational definition of the components of the nursing diagnosis hypothermia (00006) in the perioperative period[J]. Rev Bras Enferm, 2021,74(2):e20190684. DOI: 10.1590/0034-7167-2019-0684.
[3] Yi J, Lei Y, Xu S, et al. Intraoperative hypothermia and its clinical outcomes in patients undergoing general anesthesia: national study in China[J]. PLoS One, 2017, 2(6):e0177221. DOI: 10.1371/journal.pone.0177221.
[4] Lee Y, Kim K. Optimal application of forced air warming to prevent peri-operative hypothermia during abdominal surgery: a systematic review and meta-analysis[J]. Int J Environ Res Public Health, 2021,18(5):2517. DOI: 10.3390/ijerph18052517.
[5] 国家麻醉专业质量控制中心. 围术期患者低体温防治专家共识(2023版)[J]. 协和医学杂志,2023,14(4):734-743. DOI:10.12290/xhyxzz.2023-0266.
[6] Wolff RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies[J]. Ann Intern Med, 2019,170(1):51-58. DOI: 10.7326/M18-1376.
[7] Moons KGM, Wolff RF, Riley RD, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration[J]. Ann Intern Med, 2019,170(1):W1-W33. DOI: 10.7326/M18-1377.
[8] Kasai T, Hirose M, Yaegashi K, et al. Preoperative risk factors of intraoperative hypothermia in major surgery under general anesthesia[J]. Anesth Analg, 2002,95(5):1381-1383. DOI: 10.1097/00000539-200211000-00051.
[9] Yi J, Zhan L, Lei Y, et al. Establishment and validation of a prediction equation to estimate risk of intraoperative hypothermia in patients receiving general anesthesia[J]. Sci Rep, 2017,7(1):13927. DOI: 10.1038/s41598-017- 12997-x.
[10] 普鹰,张莹,汤佳骏,等. 腹腔镜手术患者术中低体温预测模型的构建及应用[J]. 中华护理杂志,2019,54(9):1308-1312. DOI:10.3761/j.issn.0254-1769.2019.09.005.
[11] 杨霞,李国宏,崔颖. 泌尿外科达芬奇机器人手术患者术中低体温风险预测模型的构建及应用研究[J]. 解放军护理杂志,2021,38(9):33-36. DOI:10.3969/j.issn.1008-9993. 2021.09.008.
[12] 史卓颖,张海伟,杜祥飞. 全身麻醉病人术中低体温发生预测模型的建立[J]. 护理研究,2021,35(2):246-249. DOI:10.12102/j.issn.1009-6493.2021.02.009.
[13] 黄萍萍,张海伟,董世阳,等. 神经外科患者术中低体温风险预测模型的构建及应用[J]. 现代临床护理,2022,21(9):62-66. DOI:10.3969/j.issn.1671-8283.2022.09.010.
[14] 黄志成,肖天涯. 结直肠癌术中低体温列线图预测模型的构建及验证[J]. 中外医学研究,2022,20(29):160-164. DOI:10.14033/j.cnki.cfmr.2022.29.041.
[15] 陈晓,陈智伟. 胃癌术中低体温列线图预测模型的建立与验证[J]. 齐齐哈尔医学院学报,2022,43(17):1601-1605. DOI:10.3969/j.issn.1002-1256.2022.17.001.
[16] 项海燕,黄立峰,钱维明,等. 基于深度学习的全身麻醉患者围术期非计划低体温预测模型的构建与应用[J]. 中华急诊医学杂志,2022,31(8):1116-1120. DOI:10.3760/cma.j.issn.1671-0282.2022.08.017.
[17] 严露培.腹腔镜结直肠癌手术患者术中低体温风险预测模型的构建及验证[D]. 重庆:重庆医科大学,2022.DOI:10.27674/d.cnki.gcyku.2022.001333.
[18] 龚晓媛,王旭,陆伦根,等. 全身麻醉下经内镜逆行胰胆管造影术中低体温预测危险因素的研究[J]. 胃肠病学,2022,27(11):641-645. DOI:10.3969/j.issn.1008-7125. 2022.11.001.
[19] 刘琳,邓溧,冯龙. 腹腔镜结直肠癌手术术中低体温预警模型的构建与验证[J]. 中国实用护理杂志,2022,38(20):1546-1553. DOI:10.3760/cma.j.cn211501-20210818- 02354.
[20] Zhao B, Zhu Z, Qi W, et al. Construction and validation of a risk prediction model for intraoperative hypothermia in elderly patients undergoing total hip arthroplasty[J]. Aging Clin Exp Res, 2023,35(10):2127-2136. DOI: 10.1007/s40520-023-02500-0.
[21] Zhang B, Pan AF. Development and evaluation of a novel predictive nomogram for assessing the risk of intraoperative hypothermia in patients undergoing thoracoscopic pulmonary tumor surgery[J]. Heliyon, 2023,9(12):e22574. DOI: 10.1016/j.heliyon.2023.e22574.
[22] 李宁,李美,黄欣欣,等.老年泌尿外科患者术中低体温风险预测模型构建[J].牡丹江医学院学报,2023,44(5):60-63.DOI:10.13799/j.cnki.mdjyxyxb.2023.05.030.
[23] 刘亮,王梦佳,王媛,等. 老年创伤性骨折手术病人术中低体温风险预测模型构建及应用检验[J]. 全科护理,2023,21(23):3262-3266. DOI:10.12104/j.issn.1674-4748. 2023.23.025.
[24] 程柳榕. 老年手术患者术中低体温风险预测模型的构建与应用[J]. 医学理论与实践,2023,36(8):1317-1320. DOI:10.19381/j.issn.1001-7585.2023.08.019.
[25] 罗梦佳,戴艳然,郎红娟. 消化道肿瘤患者术中低体温预测模型构建与验证[J]. 空军军医大学学报,2023,44(9):885-889. DOI:10.13276/j.issn.2097-1656.2023.09.018.
[26] 黄晓霞,劳景茂,韦小波,等. 腹腔镜结直肠癌手术术中低体温预警模型的构建与验证[J]. 现代医药卫生,2024,40(1):26-30. DOI:10.3969/j.issn.1009-5519.2024.01.005.
[27] Lou J, Fan Y, Cui S, et al. Development and validation of a nomogram to predict hypothermia in adult burn patients during escharectomy under general anesthesia[J]. Burns, 2024,50(1):93-105. DOI: 10.1016/j.burns.2023.06.010.
[28] Cao B, Li Y, Liu Y, et al. A multi-center study to predict the risk of intraoperative hypothermia in gynecological surgery patients using preoperative variables[J]. Gynecol Oncol, 2024,185:156-164. DOI: 10.1016/j.ygyno.2024. 02.009.
[29] Yuan X, Liu Q, Zhou H, et al. Development and validation of a predictive model for intraoperative hypothermia in elderly patients undergoing craniocerebral tumor resection: a retrospective cohort study[J]. World Neurosurg, 2024,184:e593-e602. DOI: 10.1016/j.wneu.2024.01.174.
[30] Yi J, Xiang Z, Deng X, et al. Incidence of inadvertent intraoperative hypothermia and its risk factors in patients undergoing general anesthesia in Beijing: a prospective regional survey[J]. PLoS One, 2015,10(9):e0136136. DOI: 10.1371/journal.pone.0136136.
[31] Collins GS, Ogundimu EO, Altman DG. Sample size considerations for the external validation of a multivariable prognostic model: a resampling study[J]. Stat Med, 2016,35(2):214-226. DOI: 10.1002/sim.6787.
[32] Ogundimu EO, Altman DG, Collins GS. Adequate sample size for developing prediction models is not simply related to events per variable[J]. J Clin Epidemiol, 2016,76:175-182. DOI: 10.1016/j.jclinepi.2016.02.031.
[33] Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker[J]. Heart, 2012,98(9):683-690. DOI: 10.1136/heartjnl-2011- 301246.
[34] Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement[J]. BMJ, 2015,350:g7594. DOI: 10.1136/bmj.g7594.
|