[1] Godoy MCB, Odisio EGLC, Truong MT, et al. Pulmonary nodule management in lung cancer screening: a pictorial review of lung-RADS version 1.0[J]. Radiol Clin North Am, 2018, 56(3):353-363. DOI: 10.1016/j.rcl.2018.01.003.
[2] 苏志鹏,毛文杰,李斌,等.人工智能辅助诊断系统预测肺结节早期肺腺癌浸润亚型的临床研究[J].中国肺癌杂志,2022,25(4):245-252. DOI:10.3779/j.issn.1009-3419. 2022.102.12.
[3] 滕达.64排螺旋CT用于诊断早期肺癌诊断技术及流程优化措施[J].国际医药卫生导报,2019,25(23):3889-3891. DOI:10.3760/cma.j.issn.1007-1245.2019.23.023.
[4] 陈丽英.肺良恶性结节或肿块CT灌注研究[J].中国CT和MRI杂志,2014,12(4):18-21. DOI:10.3969/j.issn.1672- 5131.2014.04.06.
[5] 谭林林,续力云,王善军,等.多平面重建联合容积再现重建对肺小结节早期诊断的价值研究[J].浙江医学,2015,37(17):1424-1427,后插2.
[6] Lynch DA, Oh AS. High-spatial-resolution CT offers new opportunities for discovery in the lung[J]. Radiology, 2020, 297(2):472-473. DOI: 10.1148/radiol.2020203473.
[7] Akhter MP, Recker RR. High resolution imaging in bone tissue research-review[J]. Bone, 2021, 143:115620. DOI: 10.1016/j.bone.2020.115620.
[8] Dai H, Zhang X, Xia J, et al. High-resolution chest CT features and clinical characteristics of patients infected with COVID-19 in Jiangsu, China[J]. Int J Infect Dis, 2020, 95:106-112. DOI: 10.1016/j.ijid.2020.04.003.
[9] 刘海峰,张东友,阳义,等.新型冠状病毒肺炎首次胸部高分辨率CT影像分析[J].中华放射学杂志,2020,54(4):292-295. DOI:10.3760/cma.j.cn112149-20200202- 00080.
[10] 朱慧媛,张莲,王亚丽,等.超高分辨率CT靶扫描对肺结节的诊断价值[J].第二军医大学学报,2017,38(9):1165-1170. DOI:10.16781/j.0258-879x.2017.09.1165.
[11] Zhu Y, Hou D, Lan M, et al. A comparison of ultra-high-resolution CT target scan versus conventional CT target reconstruction in the evaluation of ground-glass-nodule-like lung adenocarcinoma[J]. Quant Imaging Med Surg, 2019, 9(6):1087-1094. DOI: 10.21037/qims.2019.06.09.
[12] Guan X, Eris T, Zhang L, et al. A high-resolution multi-attribute method for product characterization, process characterization, and quality control of therapeutic proteins[J]. Anal Biochem, 2022, 643:114575. DOI: 10.1016/j.ab.2022.114575.
[13] 李瑞鼎.基于MIP的脑部血管重建算法研究[D]. 成都:电子科技大学,2017.
[14] Güleryüz Kızıl P, Hekimoğlu K, Coşkun M, et al. Diagnostic importance of maximum intensity projection technique in the identification of small pulmonary nodules with computed tomography[J]. Tuberk Toraks, 2020, 68(2):196-197. DOI: 10.5578/tt.69776.
[15] 陈步东,马大庆,李铁一,等.CT最大密度投影对肺弥漫性微小结节的诊断价值[J].中华放射学杂志,2002,36(11):1007-1012. DOI:10.3760/j.issn:1005-1201.2002.11.012.
[16] Satoh H. Maximum intensity projection technique in the identification of small pulmonary nodules[J]. Tuberk Toraks, 2020, 68(2):195. DOI: 10.5578/tt.69540.
[17] 王成霞,柳澄,孙炳欣,等.CT最大密度投影厚度与方位对显示尘肺小结节的优化选择研究[J].中国医疗设备,2021,36(10):52-55. DOI:10.3969/j.issn.1674-1633.2021. 10.012.
[18] Naeem MQ, Darira J, Ahmed MS, et al. Comparison of maximum intensity projection and volume rendering in detecting pulmonary nodules on multidetector computed tomography[J]. Cureus, 2021, 13(3):e14025. DOI: 10.7759/cureus.14025.
[19] 王爽,雷盛,谷涛,等.人工智能肺结节辅助诊断软件在肺CT检查结节分析中的临床应用[J/CD].中华肺部疾病杂志(电子版),2019,12(6):757-759. DOI:10.3877/cma.j.issn.1674-6902.2019.06.019.
[20] Gong L, Jiang S, Yang Z, et al. Automated pulmonary nodule detection in CT images using 3D deep squeeze-and-excitation networks[J]. Int J Comput Assist Radiol Surg, 2019, 14(11):1969-1979. DOI: 10.1007/s11548-019-01979-1.
|